福田の一夜漬け数学〜順列・組合せ(4)〜円順列(前編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜順列・組合せ(4)〜円順列(前編)

問題文全文(内容文):
${\Large\boxed{1}}$ 8人が円形のテーブルに座るとき
(1)特定の2人が隣り合う並び方は何通りか。
(2)特定の2人が向かい合う並び方は何通りか。

${\Large\boxed{2}}$ 8人が次のようなテーブルに座る方法は何通りか。
(1)正方形のテーブル。各辺に2人ずつ座る。
(2)長方形のテーブル。長辺に3人、短辺に1人座る。

${\Large\boxed{3}}$ 立方体の6面に色を塗る。隣り合う面には違う色を塗る。
(1)6色で塗り分ける方法は何通りあるか。
(2)5色で塗り分ける方法は何通りあるか。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 8人が円形のテーブルに座るとき
(1)特定の2人が隣り合う並び方は何通りか。
(2)特定の2人が向かい合う並び方は何通りか。

${\Large\boxed{2}}$ 8人が次のようなテーブルに座る方法は何通りか。
(1)正方形のテーブル。各辺に2人ずつ座る。
(2)長方形のテーブル。長辺に3人、短辺に1人座る。

${\Large\boxed{3}}$ 立方体の6面に色を塗る。隣り合う面には違う色を塗る。
(1)6色で塗り分ける方法は何通りあるか。
(2)5色で塗り分ける方法は何通りあるか。
投稿日:2018.06.25

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

ロト7全パターン買ったらプラス?

アイキャッチ画像
単元: #数A#場合の数と確率#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ロト7全パターン買ったらプラス?
この動画を見る 

法政大 確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 法政大学過去問

サイコロ4つを同時に投げる。
出た目の積が300の倍数となる確率
この動画を見る 

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 

【順列と何が違うの!?】組合せを解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
組合せ
男子4人、女子5人の中から5人の委員を選ぶ
①選び方は何通り
②男子2人、女子3人の選び方
この動画を見る 
PAGE TOP