【中学数学】相似の証明が誰でもできるようになる動画 5-2【中3数学】 - 質問解決D.B.(データベース)

【中学数学】相似の証明が誰でもできるようになる動画 5-2【中3数学】

問題文全文(内容文):
相似の証明の基礎動画です
チャプター:

00:00 はじまり

00:22 動画の趣旨

01:23 実際の問題(1)

06:03 実際の問題(2)

08:58 まとめ

10:05 まとめノート

単元: #数学(中学生)#中3数学#相似な図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
相似の証明の基礎動画です
投稿日:2021.11.27

<関連動画>

座標平面上の直角三角形 立教新座

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#図形の性質#2次関数#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△AOBが直角三角形になるときのaの値を全て求めよ。
*図は動画内参照
立教新座高等学校
この動画を見る 

【中学数学】2次方程式の解の公式の証明~中3以上はできないとヤバい~ 3-2【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の解の公式の証明
この動画を見る 

【高校受験対策】数学-死守38

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#2次方程式#1次関数#確率#2次関数#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守38

①$-7+5$を計算しなさい。

➁$\frac{3x-2}{5} \times10$を計算しなさい。

③$5ab^2 \div\frac{a}{3}$を計算しなさい。

④$(x+8)(x-6)$を計算しなさい。

⑤$25$の平方根を求めなさい。

⑥関数$y=\frac{a}{x}$のグラフが点$(6,-2)$を通るとき、$a$の値をを求めなさい。

⑦連立方程式を解きなさい。
$3x+y=-5$
$2x+3y=6$

⑧二次方程式を解きなさい。
$x^2+7x+1=0$

⑨右の図1で$\angle x$大きさを求めなさい。

⑩大小2つのさいころを同時に投げるとき、 2つとも同じ目が出る確率を求めなさい。

⑪右の図2において、点$A,B,C$は円$O$の周上の点である。
$\angle x$の大きさを求めなさい。

⑫左の図3のように、$y=ax^2(a\gt0)$のグラフ上 に2点$A,B$があり、$x$座標はそれぞれ$-6,4$である。
直線$AB$の傾きがであるとき、$a$の値を求めなさい。

この動画を見る 

式の値 立命館 補足説明あり

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+\frac{1}{y} = y +\frac{1}{x}$のとき$(x \neq y)$
$x^2y^2 -xy -6 =?$

立命館高等学校
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 
PAGE TOP