【数Ⅲ】【積分とその応用】面積12 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積12 ※問題文は概要欄

問題文全文(内容文):
曲線$\dfrac{\sqrt{x}}a+\dfrac{\sqrt{y}}b=1$は、直線$\dfrac x a+\dfrac y b=1$と$x$軸、$y$軸で囲まれた三角形を一定の面積の比に分割することを示せ。ただし、$a > 0,b > 0$とする。
チャプター:

0:00 オープニング
0:05 解説
2:58 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$\dfrac{\sqrt{x}}a+\dfrac{\sqrt{y}}b=1$は、直線$\dfrac x a+\dfrac y b=1$と$x$軸、$y$軸で囲まれた三角形を一定の面積の比に分割することを示せ。ただし、$a > 0,b > 0$とする。
投稿日:2025.03.26

<関連動画>

東邦大学医学部(2011) #Shorts #King_property #キングプロパティ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x}{\sin\ x+\cos\ x} dx$

出典:2011年東邦大学医学部 入試問題
この動画を見る 

福田の数学〜千葉大学2024年理系第6問〜最小値と方程式の解と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)=e^x+e^{-2x}$ について、次の問いに答えよ。
$(1)$ 関数 $f(x)$ の最小値を求めよ。
$(2)$ $f(x)=2$ となる $x$ の値をすべて求めよ。
$(3)$ $(2)$ で求めた $x$ の値のうち最小のものを $a_1$ 、最大のものを $a_2$ とする。 $y=f(x)$ のグラフ、 $x$ 軸、直線 $x=a_1$、直線 $x=a_2$ で囲まれる図形を $x$ 軸の周りに $1$ 回転してできる立体の体積を求めよ。
この動画を見る 

大学入試問題#66 横浜国立大学(2003) 置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x+1}{(x^2+x^1)^2}\ dx$を計算せよ。

出典:2003年横浜国立大学 入試問題
この動画を見る 

【高校数学】福井大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分83日目~47都道府県制覇への道~【㉖福井】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#福井大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【福井大学 2023】
$f(t)=2e^t-e^{2t}, g(t)=te^t$とし、$f(t)$が極大となる$t$の値を$α$、$f(t)=0$となる$t$の値を$β$とする。$xy$平面上の曲線$C$を$x=f(t), y=g(t) (α≦t≦β)$で与える。以下の問いに答えよ。
(1) $α$と$β$の値を求めよ。
(2) $α<t<β$の範囲で、$\frac{dy}{dx}$を$t$の関数として表せ。
(3) 曲線$C$と$x$軸および$y$軸で囲まれた図形の面積を求めよ。
この動画を見る 

練習問題51 広島大学 改 不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\ 2(x-1)e^{-x}\cos\ x\ dx$
$\displaystyle \int\ e^{-x}\cos\ x\ dx=\displaystyle \frac{e^{-x}}{2}(\sin\ x-\cos\ x)+c$
$\displaystyle \int\ e^{-x}\sin\ x\ dx=-\displaystyle \frac{e^{-x}}{2}(\sin\ x+\cos\ x)+c$

$c$は積分定数

出典:広島大学
この動画を見る 
PAGE TOP