【高校数学】等差数列の和の例題演習・標準 3-4.5【数学B】 - 質問解決D.B.(データベース)

【高校数学】等差数列の和の例題演習・標準 3-4.5【数学B】

問題文全文(内容文):
1⃣
等差数列において、初項から第n項までの和を$S_{n}$とする。
$S_{10}=10,S_{20}=40$のとき、$S_{n}$を求めよ。

2⃣
10から100までの自然数のうち3で割って2余る数の和$S$を求めよ
チャプター:

00:00 はじまり

00:22 問題

00:36 問題解説(1)

05:22 問題解説(2)

10:04 まとめ

10:35 問題と答え

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
等差数列において、初項から第n項までの和を$S_{n}$とする。
$S_{10}=10,S_{20}=40$のとき、$S_{n}$を求めよ。

2⃣
10から100までの自然数のうち3で割って2余る数の和$S$を求めよ
投稿日:2021.08.09

<関連動画>

福田のおもしろ数学415〜1から16の整数を直線または円形に並べ隣り合う2数の和を平方数とできるか

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数B
指導講師: 福田次郎
問題文全文(内容文):

$1,2,3,\cdots 16$を並びかえて

(1)直線上に配置する。(それぞれの場合に)

(2)円周上に配置する。(それぞれの場合に)

隣り合う$2$つの数の和が

平方数になることは可能か?
   
この動画を見る 

福田の数学〜中央大学2021年理工学部第2問〜3項間の漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$コインを繰り返し,連続した3回が順に,表→裏→表,あるいは,裏→表→裏,というパターンが出たときにコイン投げを終了する.$n\geqq 3$に対し,コインをちょうど$n$回投げて終了する確率を$p_n$とする.
以下の手順により$p_n$を求める.コインを$n$回投げて,「まだ終了していないが$n+1$回目に表が出たら終了する」または「まだ終了してないが$n+1$回目に裏が出たら終了する.」という状態にある確率を$r_n$とする.またコインを$n$回投げて「まだ終了しておらず,$n+1$回目に表が出ても裏が出ても終了しない」という状態にある確率を$s_n$とする.
このとき,$r_3=\dfrac{1}{4},s_3=\boxed{ク},r_4=\dfrac{1}{4},s_4=\boxed{ケ}$である.
ここで,$r_{n+4}$と$r_{n},s_n$を用いて表すと,それぞれ$r_{n+1}=\boxed{コ}$,$s_{n+1}=\boxed{サ}$となる.
この動画を見る 

東大 漸化式 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^{n+1}$を$x^2-x-1$で割った余りを$a_n x+b_n$とする.

(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+b_n \\
b_{n+1}=a_n
\end{array}
\right.
\end{eqnarray}$ を示せ.

(2)$a_n$と$b_n$は自然数で,互いに素であることを示せ.

東大過去問
この動画を見る 

【数B】数列: 等差×等比型の数列和! ∑[k=1からn]k・2^kの和を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \sum_{k\to1}^k・2^k$の和を求めよ.
この動画を見る 

【数B】数列: 次の条件を満たす等差数列anの一般項を求めよ。a1+a4=12,a1+a7=18

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす等差数列anの一般項を求めよ。
a1+a4=12,a1+a7=18
この動画を見る 
PAGE TOP