福田の入試問題解説〜東京大学2022年理系第5問〜立体の体積 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年理系第5問〜立体の体積

問題文全文(内容文):
座標空間内の点A(0,0,2)と点B(1,0,1)を結ぶ線分ABをz軸の周りに
1回転させて得られる局面をSとする。S上の点Pとxy平面上の点Qが$PQ=2$を
満たしながら動くとき、線分PQの中点Mが通過しうる範囲をKとする。
Kの体積を求めよ。

2022東京大学理系過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間内の点A(0,0,2)と点B(1,0,1)を結ぶ線分ABをz軸の周りに
1回転させて得られる局面をSとする。S上の点Pとxy平面上の点Qが$PQ=2$を
満たしながら動くとき、線分PQの中点Mが通過しうる範囲をKとする。
Kの体積を求めよ。

2022東京大学理系過去問
投稿日:2022.03.04

<関連動画>

【数Ⅲ】積分法の応用:体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C:y=ax^2$ と直線 $\ell:y=bx$とで囲まれた図形をDとする。(a,bを正の定数とする)
Dを $\ell$のまわりに1回転してできる立体の体積Vを求めよ。
この動画を見る 

【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
この動画を見る 

大学入試問題#450「計算の正確性のみを問う問題」 横浜国立大学(2006) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$

出典:2006年横浜国立大学 入試問題
この動画を見る 

【数Ⅲ-149】定積分①(基本編)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分①・基本編)

Q.次の定積分を求めよ

①$\int_1^3 (x) dx$

➁$\int_{-2}^1 3x^4 dx$

③$\int_{0}^1 2^t dt$

④$\int_{2}^{2}\frac{sinx}{x^3}dx$

⑤$\int_{0}^{\frac{\pi}{4}}6sin2xdx$

⑥$\int_{0}^{\pi} sin^2xdx$
この動画を見る 

大学入試問題#774「基本的な良問」 横浜国立大学(1998) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e-1} \displaystyle \frac{log(log(x+1))}{x+1} dx$

出典:1998年横浜国立大学 入試問題
この動画を見る 
PAGE TOP