場合の数、具体的に求める?一般的に求める? - 質問解決D.B.(データベース)

場合の数、具体的に求める?一般的に求める?

問題文全文(内容文):
n人を3つのグループに分ける。それぞれ何通りか?
・0人は不可
・グループに名前はない
・個人は区別する
(1)n=4
(2)n=5
(3)n=6
(4)n=k
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
n人を3つのグループに分ける。それぞれ何通りか?
・0人は不可
・グループに名前はない
・個人は区別する
(1)n=4
(2)n=5
(3)n=6
(4)n=k
投稿日:2023.09.28

<関連動画>

山形大(医)確率 等比数列の和 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
箱に白玉が3個、赤玉が2個。1個とり出し、白なら戻す。赤なら戻さない。
2個目の赤が出たら終了。n回目に終わる確率を求めよ。
この動画を見る 

【高校数学】原因の確率~病原菌の問題~ 2-9【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある病原菌の検査試薬は、病原菌に感染しているのに誤って陰性と判断する確率が
1%, 「感染していないのに誤って陽性と判断する確率が2%である。全体の1%がこの
病原菌に感染している集団から1つの個体を取り出すとき、陽性だったのに、実際
には病原菌に感染していない確率を求めよ。
この動画を見る 

場合の数

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,x,y,z$は$0$以上の整数
$2x+y+z=n$を満たす$(x,y,z)$は何組あるか求めよ
この動画を見る 

【高校数学】順列~理解すれば怖くない~ 1-6【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
順列についての説明動画です
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは
全て異なるとする。
プレゼントの交換は次の手順で行う。
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の
プレゼントを受け取る。

交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(1)2人または3人で交換会を開く場合を考える。
$(\textrm{i})$2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{ア}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{イ}}{\boxed{ウ}}$である。
$(\textrm{ii})$3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{エ}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。
$(\textrm{iii})$3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。

(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を
次の構想に基づいて求めてみよう。
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。

1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は
$\boxed{サ}$通りあり、ちょうど2人が自分のプレゼントを受け取る場合は$\boxed{シ}$通りある。
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が
終了しない受け取り方の総数は$\boxed{スセ}$である。
したがって、1回目の交換で交換会が終了する確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は$\frac{\boxed{チツ}}{\boxed{テト}}$である。
\(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外
の人の持参したプレゼントを受け取った時、その回で交換会が終了する
条件付き確率は$\frac{\boxed{ナニ}}{\boxed{ヌネ}}$である。

2022共通テスト数学過去問
この動画を見る 
PAGE TOP