場合の数、具体的に求める?一般的に求める? - 質問解決D.B.(データベース)

場合の数、具体的に求める?一般的に求める?

問題文全文(内容文):
n人を3つのグループに分ける。それぞれ何通りか?
・0人は不可
・グループに名前はない
・個人は区別する
(1)n=4
(2)n=5
(3)n=6
(4)n=k
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
n人を3つのグループに分ける。それぞれ何通りか?
・0人は不可
・グループに名前はない
・個人は区別する
(1)n=4
(2)n=5
(3)n=6
(4)n=k
投稿日:2023.09.28

<関連動画>

筑波大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^n$人勝ち抜き戦
クジで2人ずつに分けて1回戦
勝者のみをクジで2人ずつに分けて2回戦
以下同じ

(1)
$A$が優勝する確率を求めよ

(2)
$A$と$B$が1回戦で戦う確率を求めよ

(3)
$A$と$B$が2回戦で戦う確率を求めよ

(4)
$A$と$B$が対戦する確率を求めよ

出典:1993年筑波大学 過去問
この動画を見る 

茨城大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$

(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ

(2)
積$abcd$が4の倍数となる確率を求めよ

出典:2010年茨城大学 過去問
この動画を見る 

【数学A】確率③ これで最後の動画です(多分)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】確率問題の解き方説明動画です
-----------------
動画内の図を参照し、以下の問に答えよ
Aから3個 Bから2個 同時に出す。
黒玉が3個の確率は?
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第2問〜ポーカーの役が揃う場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つの\\
スートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の\\
代わりに、A,J,Q,Kの記号を用いることが多い)\\
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、\\
Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。\\
52枚のカードから5枚を抜き出す組合せの数は{}_{52}\textrm{C}_5=2598960通りあるが、それが\\
ストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの\\
5枚のカードの最小の数は1,2,\ldots,\boxed{\ \ アイ\ \ }のどれかであるから、それぞれのスート\\
ごとに\boxed{\ \ アイ\ \ }通り考えられる。よって、4×\boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }通りのストレート\\
フラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、\\
スートがそろっていない組合せの数なので\boxed{\ \ オカキクケ\ \ }通りある。\\
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚の\\
ふたつの組があり、3枚の組を選ぶ組合せ\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3、残り2枚のカードを選ぶ組合せ\\
は\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2であるから、フルハウスとなる組合せの数は\\
\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3×\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ } 通りである。\\
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
この動画を見る 
PAGE TOP