福田のわかった数学〜高校2年生075〜三角関数(14)三角関数の最大最小 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生075〜三角関数(14)三角関数の最大最小

問題文全文(内容文):
数学$\textrm{II}$ 三角関数(14) 最大最小(4)
$y=\cos^2x+\sqrt3\sin x\cos x-\sin x-\sqrt3\cos x (0 \leqq x \leqq \pi)$
の最大値、最小値とそのときのxの値を求めよ。
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(14) 最大最小(4)
$y=\cos^2x+\sqrt3\sin x\cos x-\sin x-\sqrt3\cos x (0 \leqq x \leqq \pi)$
の最大値、最小値とそのときのxの値を求めよ。
投稿日:2021.11.09

<関連動画>

【数Ⅱ】【微分法と積分法】面積和の最小値 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0<t<1とする。放物線y=x²と直線lが点T(t,t²)で接している。このとき、放物線と直線l、x軸、直線x=1で囲まれた2つの図形の面積の和をSとする。Sの最小値を求めよ。
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。

(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。

(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。

2021青山学院大学理工学部過去問
この動画を見る 

早稲田 微分・積分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$f(x)=(x+\frac{1}{2})^2,g(x)=\int_a^x f(t) dt$
$y=f(x)$と$y=g(x)$が異なる3点で交わるようなaの範囲
この動画を見る 

#千葉大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{1}{\cos x} dx$

出典:2023年千葉大学
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a+\displaystyle \frac{1}{a}=45$のとき、
$\displaystyle \frac{a^2}{a^4-a^2+1}=?$
この動画を見る 
PAGE TOP