岡山大 対数方程式の実数解の個数 - 質問解決D.B.(データベース)

岡山大 対数方程式の実数解の個数

問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$

出典:1995年岡山大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$

出典:1995年岡山大学 過去問
投稿日:2019.10.10

<関連動画>

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

【高校数学】 数Ⅱ-141 常用対数①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①____を底とする対数を常用対数という。
$1 \leqq a \lt 10,x=a \times 10^{π}$であるとき$\log_{10} x=\log_{10} a+n$となる。

◎$\log_{10}2=0.03010,\log_{10}3=0.4771$とする。次の値を小数第4位までもとめよう。

②$\log_{10}200$

③$\log_{10}15$

④$\log_{10}0.6$

⑤$\log_49$
この動画を見る 

07愛知県教員採用試験(数学:6番 対数関数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$

$f(x)=\log_2 (x+2)+\log_4 (4-x)$の
最大値を求めよ.
この動画を見る 

【高校数学】対数関数①~グラフとその性質~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
対数関数 グラフとその性質の説明動画です
この動画を見る 

首都大学 対数 整数問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{10}x+log_{10}y=log_{10}(y+2x^2+1)$を満たす整数$(x,y)$の組をすべて求めよ

出典:2008年東京都立大学 過去問
この動画を見る 
PAGE TOP