大学入試問題#216 宮崎大学(2017) 定積分 - 質問解決D.B.(データベース)

大学入試問題#216 宮崎大学(2017) 定積分

問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2(3x+\displaystyle \frac{\pi}{6})dx$を計算せよ。

出典:2017年宮崎大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos^2(3x+\displaystyle \frac{\pi}{6})dx$を計算せよ。

出典:2017年宮崎大学 入試問題
投稿日:2022.06.02

<関連動画>

大学入試問題#333 青山学院大学(2013) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty }\displaystyle \int_{0}^{log\ a}\displaystyle \frac{e^x}{e^x+a}dx$

出典:2013年青山学院大学 入試問題
この動画を見る 

福田のおもしろ数学358〜定積分の計算

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$I=\int_0^\frac{\pi}{2} \frac{\sin^3 x}{\sin x+\cos x} dx$の値を求めて下さい。
この動画を見る 

大学入試問題#528「正面突破はしたくない」 福島県立医科大学② 改 (2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \sin^4x\ \cos^22x\ dx$

出典:2021年福島県立医科大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題6 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
(1) $\displaystyle f(x)=x+\int_0^2f(t)e^t~dt$
(2) $\displaystyle f(x)=\sin x-\int_0^\frac\pi3\{f(t)-\frac\pi3\}\sin t~dt$
この動画を見る 

【数Ⅲ】【積分とその応用】定積分の種々の問題4 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle f(x)=\int_0^{x}\sin 2t~dt~~(0\leqq x\leqq 2\pi)$

の極値を求めよ。
この動画を見る 
PAGE TOP