数学「大学入試良問集」【7−2 二次関数と不等式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【7−2 二次関数と不等式】を宇宙一わかりやすく

問題文全文(内容文):
$a$を実数の定義とする。
区間$1 \leqq x \leqq 4$を定義域とする2つの関数$f(x)=ax,g(x)=x^2-4x+9$を考える。
以下の条件を満たすような$a$の範囲をそれぞれ求めよ。
(1)定義域に属するすべての$x$に対して、$f(x) \geqq g(x)$が成り立つ。
(2)定義域に属する$x$で、$f(x) \geqq g(x)$を満たすものがある。
(3)定義域に属するすべての$x_1$と$x_2$に対して、$f(x_1) \geqq g(x_2)$が成り立つ
(4)定義域に属する$x_1$と$x_2$で、$f(x_1) \geqq g(x_2)$を満たすものがある。
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数の定義とする。
区間$1 \leqq x \leqq 4$を定義域とする2つの関数$f(x)=ax,g(x)=x^2-4x+9$を考える。
以下の条件を満たすような$a$の範囲をそれぞれ求めよ。
(1)定義域に属するすべての$x$に対して、$f(x) \geqq g(x)$が成り立つ。
(2)定義域に属する$x$で、$f(x) \geqq g(x)$を満たすものがある。
(3)定義域に属するすべての$x_1$と$x_2$に対して、$f(x_1) \geqq g(x_2)$が成り立つ
(4)定義域に属する$x_1$と$x_2$で、$f(x_1) \geqq g(x_2)$を満たすものがある。
投稿日:2021.04.30

<関連動画>

【高校数学】 数Ⅱ-116 和と積の公式①・積→和(差)編

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin\alpha\cos\beta=①,\cos\alpha\sin\beta=②$

$\cos\alpha\cos\beta=③,\sin\alpha\sin\beta=④$

次の値を求めよう.

⑤$\sin75°\cos 15°$

⑥$\sin75°\sin45°$

⑦$\cos45°\cos75°$
この動画を見る 

動画内に誘導あり!でもむずい! 市川 2022入試問題解説10問目

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(1)$\{ (a-b)^2+b^2 \} \{ (a+b)^2+b^2 \} $=?
(2)$\frac{1}{6} \times \frac{(4^4+4・3^4)(4^4+4・11^4)(4^4+4・19^4)
(4^4+4・27^4)(4^4+4・35^4)}
{(4^4+4・7^4)(4^4+4・15^4)(4^4+4・23^4)(4^4+4・31^4)(4^4+4・39^4)}$

2022市川
この動画を見る 

【高校数学】数Ⅰ-16 √(ルート)シリーズ④(二重根号編)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
この動画を見る 

2次方程式 3通りで解説!! 2024日比谷高校

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(x-1)^2-4(x-2)^2=0$

2024日比谷高等学校
この動画を見る 

福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。

2023神戸大学文系過去問
この動画を見る 
PAGE TOP