福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ - 質問解決D.B.(データベース)

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の点A(a,b)を1つ固定し、曲線y=x^2上の点P(x,x^2)と点A\\
との距離の2乗をg(x)とおく。関数y=g(x)のグラフが区間(-\infty,\infty)において下に凸\\
となるための条件はb \leqq \boxed{\ \ ア\ \ }\ となることである。b \gt \boxed{\ \ ア\ \ }\ のときy=g(x)のグラフは\\
2つの変曲点をもち、そのx座標は\ \boxed{\ \ イ\ \ }\ 及び\ \boxed{\ \ ウ\ \ }\ である。\\
ただし\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }とする。また、関数y=g(x)が極小となるxがただ1つであるために\\
a,bが満たすべき条件をb \leqq F(a)と書くと、F(a)=\boxed{\ \ エ\ \ } である。\\
b= F(a)のとき、関数y=g(x)はx=\boxed{\ \ オ\ \ }において最小値をとる。\\
さらに、連立不等式x \geqq 0,\ y \geqq x^2が表す領域をDとするとき、\\
曲線y=F(x)のDに含まれる部分の長さLを求めると、L=\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の点A(a,b)を1つ固定し、曲線y=x^2上の点P(x,x^2)と点A\\
との距離の2乗をg(x)とおく。関数y=g(x)のグラフが区間(-\infty,\infty)において下に凸\\
となるための条件はb \leqq \boxed{\ \ ア\ \ }\ となることである。b \gt \boxed{\ \ ア\ \ }\ のときy=g(x)のグラフは\\
2つの変曲点をもち、そのx座標は\ \boxed{\ \ イ\ \ }\ 及び\ \boxed{\ \ ウ\ \ }\ である。\\
ただし\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }とする。また、関数y=g(x)が極小となるxがただ1つであるために\\
a,bが満たすべき条件をb \leqq F(a)と書くと、F(a)=\boxed{\ \ エ\ \ } である。\\
b= F(a)のとき、関数y=g(x)はx=\boxed{\ \ オ\ \ }において最小値をとる。\\
さらに、連立不等式x \geqq 0,\ y \geqq x^2が表す領域をDとするとき、\\
曲線y=F(x)のDに含まれる部分の長さLを求めると、L=\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
投稿日:2022.06.19

<関連動画>

東京電機大 複素数のべき乗

アイキャッチ画像
単元: #複素数と方程式#複素数#指数関数#数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+2i)^n=x_n+y_ni$
(1)$x^2_n+y^2_n$を求めよ.
(2)$x_{n+2}$を$x_{n+1}$と$x_n$で表せ.
(3)$x_n$と$y_n$の最大公約数を求めよ.

東京電機大過去問
この動画を見る 

指数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数である.
$2^x+2^y=10,4^{x+y}=5,2^{x-y}+2^{y-x}=?$
これを解け.
この動画を見る 

【高校数学】高校数学 指数の基本計算の考え方【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
指数の基本計算の考え方を解説していきます.
この動画を見る 

【数Ⅱ】指数関数・対数関数:大小比較① 次の各組の数の大小を不等号を用いて表せ。(1)2の1/2乗, 4の1/4乗, 8の1/8乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の各組の数の大小を不等号を用いて表せ。
(1)$2$の$\dfrac{1}{2}$乗,$4$の$\dfrac{1}{4}$乗,$8$の$\dfrac{1}{8}$乗
この動画を見る 

指数・対数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&3^a=7^b=441\\
&&\frac{ab}{a+b} = ?

\end{eqnarray}
$
この動画を見る 
PAGE TOP