【高校受験対策/数学】難解死守4 - 質問解決D.B.(データベース)

【高校受験対策/数学】難解死守4

問題文全文(内容文):
高校受験対策・難解死守4

①連立方程式を解け
$\frac{2x-y}{3}=\frac{y}{2}-1$
$(x+1):(y-2)=3:4$

➁$3\sqrt{8}-\frac{\sqrt{3}}{2}-\sqrt{2}+\sqrt{75}$

③$x,y,z$を$0$以上の整数とするとき、$x+2y+3z=20$を満たす整数の組$(x,y,z)$は何組あるか。

④$x^2yz-y^3z+2y^2z^2-yz^3$を因数分解せよ。

⑤大中小3つのさいころを同時に1回投げて、大中小のさいころの出た目の数をそれぞれ$a,b,c$とする。
このとき$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$となる確率を求めよ。

⑥右の図のように、円$o$の周上に5点、$A,B,C,D,E$をとる。
線分$AC$は 円$o$の直径であり、$\stackrel{\huge\frown}{BC}=\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$、$\angle BAC=15°$である。
線分$AC$と$BE$の交点を$F$とするとき、$\angle AFE$の大きさを求めよ。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守4

①連立方程式を解け
$\frac{2x-y}{3}=\frac{y}{2}-1$
$(x+1):(y-2)=3:4$

➁$3\sqrt{8}-\frac{\sqrt{3}}{2}-\sqrt{2}+\sqrt{75}$

③$x,y,z$を$0$以上の整数とするとき、$x+2y+3z=20$を満たす整数の組$(x,y,z)$は何組あるか。

④$x^2yz-y^3z+2y^2z^2-yz^3$を因数分解せよ。

⑤大中小3つのさいころを同時に1回投げて、大中小のさいころの出た目の数をそれぞれ$a,b,c$とする。
このとき$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$となる確率を求めよ。

⑥右の図のように、円$o$の周上に5点、$A,B,C,D,E$をとる。
線分$AC$は 円$o$の直径であり、$\stackrel{\huge\frown}{BC}=\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$、$\angle BAC=15°$である。
線分$AC$と$BE$の交点を$F$とするとき、$\angle AFE$の大きさを求めよ。
投稿日:2020.02.06

<関連動画>

【奥が深い?スッキリ解答】一次関数:函館ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
1次関数$ y=ax+3(a \lt 0)$
xの変域$ -2 \leqq x \leqq 5$であるとき,yの変域$ -2 \leqq y \leqq b $となるような
aとbの値を求めなさい.

函館ラサール高校過去問
この動画を見る 

文字式:明治学院高校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#明治学院高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 明治学院高等学校

次の問いに答えよ。
$\displaystyle \frac{2x+3y}{2}-\displaystyle \frac{x+2y}{3}$
を計算せよ。
この動画を見る 

ルート含む数の大小関係  青山学院

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
次の数を小さい順に並べ記号で答えよ
ア. $\frac{7}{6}$
イ. $\frac{\sqrt {10}}{3}$
ウ. $\sqrt{\frac{7}{6}}$
エ. $\frac{\sqrt5}{2}$

青山学院大学高等部
この動画を見る 

【得点源にするために…!】連立方程式:西大和学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #中2数学#連立方程式#高校入試過去問(数学)#西大和学園高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.

西大和学園高校過去問
この動画を見る 

反比例の変域 桃山学院

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=\frac{12}{x} $ (x < -4)
$\boxed{?} <y< \boxed{?}$

桃山学院高等学校
この動画を見る 
PAGE TOP