【高校受験対策/数学】関数-58 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数-58

問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
投稿日:2022.01.07

<関連動画>

数学を数楽にする計算

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
以下を求めよ。
$(2+\sqrt{ 3 })^2(2-\sqrt{ 3 })$
この動画を見る 

コメント欄が荒れそうな解き方してしまった🙇‍♂️中学受験の知識だけでは解けません。東北学院

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#三平方の定理#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
半径=2
斜線部の面積は?
*図は動画内参照

東北学院高等学校
この動画を見る 

【中学数学】関数y=ax²:y=1/2x²とy=ax+bが2点A,Bで交わっている。点A,Bのx座標がそれぞれ-2,3のとき (1)点Aの座標 (2)直線ABの式 (3)△OABの面積 を求めよ。

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$y=ax^2:y=\dfrac{1}{2}x^2$と$y=ax+b$が2点A,Bで交わっている。点A,Bのx座標がそれぞれ-2,3のとき 
(1)点Aの座標 
(2)直線ABの式 
(3)△OABの面積 
を求めよ。
この動画を見る 

福田のおもしろ数学019〜ジュニア数学オリンピック本選問題〜直角三角形の斜辺の長さを求める

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
直角三角形の一辺の長さが 18 で、すべての辺の長さが整数のとき、斜辺の長さは?

ジュニア数学オリンピック過去問
この動画を見る 

どうやったら簡単に解けるか 2022 立命館高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=\frac{\sqrt 2 -2}{2}$のとき
$x^2+2x+ \frac{1}{x+1} +1 =?$

2022立命館高等学校
この動画を見る 
PAGE TOP