【高校受験対策/数学】関数-58 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数-58

問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数58

Q.
右の図1のように、1辺が$5cm$の正方形$ABCD$と、$EG=15cm,\angle EGF=90°$ の直角二等辺三角形$EFG$がある。
辺$BC$と辺$FG$は直線$l$上にあり、頂点$C$と頂点$F$は重なっている。
いまこの状態から、直角二等辺三角形$EFG$を固定し、正方形$ABCD$を直線$l$に沿って、
矢印の向きに毎秒$1cm$の達さで、頂点$B$ が頂点$G$に重なるまで動かす。
正方形$ABCD$を動かし始めてから$x$秒後に、 正方形$ABCD$と直角二等辺三角形$EFG$が重なる部分の面積を$ycm^2$とする。
図2は動かし始めてから2秒後の位置を表しており、図中の斜線部分は、重なった部分を表している。
このとき、次の各問に答えなさい。
ただし、正方形$ABCD$と直角二等辺三角形$EFG$と直線$l$は同じ平面上にあるものとし、$x=0$のとき$y=0$とする。

①$x=3$のときの$y$の値を求めよ。
②$y$の値が最大となるのは、正方形$ABCD$を動かし始めて何秒後から何秒後 までの間か。
このときの$x$の値の範囲を、不等号を使って表せ。
③$y=8$となる$x$の値をすべて求めよ。
投稿日:2022.01.07

<関連動画>

【自分でも解きたくなる…!】文字式:共立女子第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
x=√3+4のとき、x^2-7x+12の値を求めなさい。
この動画を見る 

図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 

開成高校 令和四年度最初の一問 2022年入試問題解説50問目

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$7x^2-4\sqrt 2x+1=0$($\sqrt 2$の近似値=1.414)
2つの解を求めよ。
また、2つの解のうち$\frac{2}{5}$に近い方を、小数第4位を四捨五入し小数第3位まで求めよ。

2022開成高等学校
この動画を見る 

【中学数学】三平方の定理の証明~一緒にしよう~【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三平方の定理がなぜ成り立つかを証明します
この動画を見る 
PAGE TOP