【高校数学】 数B-47 位置ベクトルと図形③ - 質問解決D.B.(データベース)

【高校数学】 数B-47 位置ベクトルと図形③

問題文全文(内容文):
①3点$A(4,3,a),B(2,-1,5),C(5,b,-13)$が一直線上にあるように
$a,b$の値を定めよう.

②4点$A(5,2,5),B(3,1,2),C(-2,-1,-6),D(a,2,3)$が同じ平面上にあるように
定数$a$の値を定めよう.
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3点$A(4,3,a),B(2,-1,5),C(5,b,-13)$が一直線上にあるように
$a,b$の値を定めよう.

②4点$A(5,2,5),B(3,1,2),C(-2,-1,-6),D(a,2,3)$が同じ平面上にあるように
定数$a$の値を定めよう.
投稿日:2016.01.12

<関連動画>

18奈良県教員採用試験(数学:1番 ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣一直線上にないO、A、B
$\overrightarrow{ OD } = 3\overrightarrow{ OA }$ , $\overrightarrow{ OE } = 2\overrightarrow{ OB }$
BDとAEの交点をC
(1)$\overrightarrow{ OC } $を$\overrightarrow{ OA } $と$\overrightarrow{ OB } $で表せ
(2)OCとABの交点をF
AF:FBを求めよ。
(3)$|\overrightarrow{ OA } |=4 $ , $|\overrightarrow{ OB }|= 5$ , $|\overrightarrow{ OC }|= 6$のときDEの長さを求めよ。
この動画を見る 

【高校数学】 数B-50 座標空間における図形①

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
3点$A(8,-7,5),B(-2,3,-5),C(3,-2,-3)$に体して,
次の各点の座標を求めよう.

①線分$AB$を$3:2$に内分する点

②線分$AC$を$2:3$に外分する点

③線分$AB$の中点

④$\triangle ABC$の重心
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

福田の数学〜大阪大学2025理系第3問〜空間図形と最大最小の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。

$\angle OAP=30°$かつ$y\geqq 0$を満たすように

点$P$が動くとき、

$(x+1)(y+1)$の最大値と最小値を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

【高校数学】 数B-4 ベクトルの式の計算①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式を簡単にしよう。

①$(3\vec{ a }-2\vec{ b })-(\vec{ a }-5\vec{ b })$

②$-5(2\vec{ a }-\vec{ b })+3(\vec{ a }-2\vec{ b })$

◎次の等式を満たす$\vec{ x }$を$\vec{ a },\vec{ b }$を用いて表そう。

③$5\vec{ x }-6\vec{ a }=2\vec{ b }+3\vec{ x }$

④$3(2\vec{ a }-\vec{ b }+\vec{ x })=9\vec{ a }+\vec{ b }$
この動画を見る 
PAGE TOP