福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小 - 質問解決D.B.(データベース)

福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小

問題文全文(内容文):
大問1の(4)
放物線 $C:y=x^2$上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 $p>0$であるとする。
このとき、qはpを用いてq=[ス]と表され、$l₁$と$l₂$およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
大問1の(4)
放物線 $C:y=x^2$上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 $p>0$であるとする。
このとき、qはpを用いてq=[ス]と表され、$l₁$と$l₂$およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
投稿日:2022.10.28

<関連動画>

福田の数学〜千葉大学2022年理系第2問〜三角形と三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点Oと点A(1,0)と点B(0,1)がある。$0 \lt t \lt 1$に対し、
線分BO,OA,ABのそれぞれを$t:(1-t)$に内分する点をP,Q,Rとする。
(1)$\triangle PQR$の面積をtの式で表せ。
(2)$\triangle PQR$が二等辺三角形になるときのtの値を全て求めよ。
(3)$\theta = \angle RPQ$とする。(2)それぞれの場合に$\cos\theta$を求めよ。

2022千葉大学理系過去問
この動画を見る 

東工大 y=e^x に引ける接線の数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ

出典:1980年東京工業大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第3問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$実数$k \gt 0$ に対して、関数$A(k)=\int_0^2|x^2-kx|dx$とすると

$A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}
(0 \lt k \lt \boxed{\ \ サシ\ \ })

\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}(\boxed{\ \ サシ\ \ } \leqq k)
\end{array}
\right.$
となる。この関数A(k)が最小となるのは$k=\sqrt{\boxed{\ \ テト\ \ }}$のときで、そのときの
A(k)の値は$\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}$

2022慶應義塾大学総合政策学部過去問
この動画を見る 

大学入試問題#846「基本問題」 #岩手大学(2017) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ

出典:2017年岩手大学 入試問題
この動画を見る 

大学入試問題#187 慶應義塾大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^e}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2006年慶應義塾大学 入試問題
この動画を見る 
PAGE TOP