福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小 - 質問解決D.B.(データベース)

福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小

問題文全文(内容文):
大問1の(4)
放物線 C:y=x²上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 p>0であるとする。
このとき、qはpを用いてq=[ス]と表され、l₁とl₂およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
単元: #大学入試過去問(数学)#大学入試過去問(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
大問1の(4)
放物線 C:y=x²上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 p>0であるとする。
このとき、qはpを用いてq=[ス]と表され、l₁とl₂およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
投稿日:2022.10.28

<関連動画>

福田の数学〜北里大学2022年医学部第1問(2)〜逆関数と方程式の解

アイキャッチ画像
単元: #数Ⅲ#大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#大学入試過去問(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (2) f(x) = log (x/1-x) とする。
関数f(x) の逆関数は f^-1 (x) = [エ]である。
方程式f^-1 (x) - a=0が実数解をもつとき、 定数aのとり得る値の範囲は[オ]である。
方程式 {f^-1(x)}²-bf^-1 (x)-3b=0が実数解をもつとき、 定数 bのとり得る値の範囲は[カ]である。
この動画を見る 

【解答速報・全問解説】2024年 武蔵野大学ムサシノスカラシップ 数学IA 解答速報【ゆう☆たろう】

アイキャッチ画像
単元: #大学入試過去問(数学)#大学入試過去問(数学)#数学(高校生)#大学入試解答速報#数学#武蔵野大学#武蔵野大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。

こちらの動画は、2023年11月26日(日)に実施された、2024年武蔵野大学ムサシノスカラシップ選抜(申請型奨学金対象)の数学ⅠAの解答速報です。

当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。

解説者は理数個別指導学院中山校のゆう☆たろう先生です。
https://www.youtube.com/playlist?list=PLdLgDY469Qr5zKa9ZgI9StW_-cNtbBDsn
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#大学入試過去問(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(1)
aを正の実数とする。n=1,2,3,…に対して、
I[n]=∫とx^(n+a-1)*e^(-x)dx
と定める。次の問に答えよ。
(1)n=1,2,3,…に対して、I[n]≦1/(n+a)を示せ。
(2)n=1,2,3,…に対して、I[n+1]-(n+a)I[n]を求めよ。
(3)極限値lim[n→∞]nI[n]を求めよ。
(4)実数b,cに対して、J[n]=n³(I[n]+b/n+c/n²)(n=1,2,3,…)と定める。数列{J[n]}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値lim[n→∞]J[n]をaの式で表せ。
この動画を見る 

【数Ⅱ】微分法と積分法:一橋大学1995年 直線の通過領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#大学入試過去問(数学)#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
tが0≦t≦1の範囲を動くとき、直線y=3t²x-2t³の通り得る点の存在範囲を求め、そ れを図示しよう。
この動画を見る 

【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(3)

アイキャッチ画像
単元: #大学入試過去問(数学)#大学入試過去問(数学)#明治大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕x+2y=5、x>0,y>0を満たす実数x,yがある。
  (1) 2x²+y²の最小値
  (2) log₁₀x + 2log₁₀y の最大値
  (3) 1/x + 2/y の最小値
この動画を見る 
PAGE TOP