福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小 - 質問解決D.B.(データベース)

福田の数学〜北里大学2022年医学部第1問(4)〜放物線と2法線で囲まれた面積の最小

問題文全文(内容文):
大問1の(4)
放物線 C:y=x²上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 p>0であるとする。
このとき、qはpを用いてq=[ス]と表され、l₁とl₂およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
大問1の(4)
放物線 C:y=x²上に、2つの動点P(p,p²), Q (q, q²)がある。点PにおけるCの接線l₁と点 Q における C の接線l₂は垂直であり、 p>0であるとする。
このとき、qはpを用いてq=[ス]と表され、l₁とl₂およびCで囲まれた部分の面積Sはpを用いて S=[セ]と表される。
点PにおけるCの法線と点QにおけるCの法線の交点をRとし、 2つの線分PRとQRおよびCで囲まれた部分の面積をTとおく。 pが正の実数全体を動くとき、Tの最小値は[ソ]である。
投稿日:2022.10.28

<関連動画>

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$,  $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。

2017千葉大学理系過去問
この動画を見る 

#明治大学2023#定積分_24#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \sin^2 2x dx$

出典:2023年明治大学
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年文系第2問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#不定積分・定積分#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数tの関数\hspace{210pt}\\
\\
F(t)=\int_0^1|x^2-t^2|dx\\
\\
について考える。\\
(1)0 \leqq t \leqq 1のとき、F(t)をtの整式として表せ。\\
(2)t \geqq 0 のとき、F(t)を最小にするtの値TとF(T)の値を求めよ。
\end{eqnarray}

2022東北大学文系過去問
この動画を見る 

計算しないで答えを出せ!奈良教育大

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nは自然数、mは定数
S(n)=1+2+…+mn
T(n)=S(n)-(1からmn間のmの倍数の和)

$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{T(n)}{S(n)}
$

を求めよ

奈良教育大学2009年過去問
この動画を見る 

ずばずば約分できる問題【数学 入試問題】【奈良県立医大】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$abc=n$のとき、
$\dfrac{3a}{ab+a+1}+\dfrac{3nb}{bc+nb+n}+\dfrac{3c}{ca+c+n}$の値を求めよ。
ただし、$a,b,c$はすべて正の実数。
この動画を見る 
PAGE TOP