気付けば一瞬!だけど言いたいことを全て言った - 質問解決D.B.(データベース)

気付けば一瞬!だけど言いたいことを全て言った

問題文全文(内容文):
x+y=?
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x+y=?
*図は動画内参照
投稿日:2023.09.17

<関連動画>

福田の数学〜早稲田大学2023年教育学部第1問(2)〜袋から球を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)袋の中に赤玉5個と白玉5個が入っている。次の規則に従って袋から玉を無作為に取り出す。
ステップ1. 袋から玉を3個取り出す。
ステップ2. ステップ1で取り出した玉の中に含まれている赤玉の数と同じ数の玉を袋から取り出す。

このとき、2回取り出した玉の中で赤玉が合計3個となる事象の確率を求めよ。
ただし、ステップ1の後、取り出された玉を袋に戻さない。
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

ここで間違える。投影図 正四角錐

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正四角錐の体積=?
*図は動画内参照
岐阜県
この動画を見る 

【短時間でマスター!!】確率 じゃんけんの問題を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
確率 じゃんけんの問題
①3人でじゃんけんを1回するとき、ただ1人の勝者が決まる確率
②3人でじゃんけんを1回するとき、あいこになる確率
この動画を見る 

福田の数学〜慶應義塾大学2024総合政策学部第3問〜条件付き確率

アイキャッチ画像
単元: #数A#確率
指導講師: 福田次郎
問題文全文(内容文):
いま、$3:2$の比で表と裏が出るコインと$2:3$の比で表と裏が出るコインの2枚がある状況を考える。$(1)\ $どちらか1枚のコインを無作為に選んでコイントスを行うとき、表が出る確率を求めよ。$(2)\ $どちらか1枚のコインを無作為に選んでコイントスを行ったところ、表が出た。このコインを使ってもう1回コイントスを行うとき、表が出る確率を求めよ。$(3)\ $どちらか1枚のコインを無作為に選んで2回コイントスを行ったところ、2回とも表が出た。このコインを使ってもう1回コイントスを行うとき、表が出る確率を求めよ。$(4)\ $2枚のコインを使って同時にコイントスを行ったところ、両方のコインの表裏が同じになる確率を求めよ。$(5)\ $2枚のコインを使って同時にコイントスを行ったところ、一方のコインは表、もう一方のコインは裏が出た。表が出たコインを使ってもう1回コイントスを行うとき、表が出る確率を求めよ。
この動画を見る 
PAGE TOP