【誘導あり:概要欄】大学入試問題#256 神戸大学2012 #極限 #はさみうちの定理 - 質問解決D.B.(データベース)

【誘導あり:概要欄】大学入試問題#256 神戸大学2012 #極限 #はさみうちの定理

問題文全文(内容文):
$2 \leqq n$自然数
$S_n=\displaystyle \sum_{k=1}^{n^3-1}\displaystyle \frac{1}{k\ log\ k}$

(1)
$2 \leqq k$:自然数
$\displaystyle \frac{1}{(k+1)log(k+1)} \lt \displaystyle \int_{k}^{k+1}\displaystyle \frac{dx}{x\ log\ x} \lt \displaystyle \frac{1}{k\ log\ k}$

(2)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。

出典:2012年神戸大学 入試問題
チャプター:

00:00 問題提示
00:18 本編スタート
12:26 作成した解答①の掲載
12:40 作成した解答②の掲載
12:54 作成した解答③の掲載
13:07 作成した解答④の掲載

単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$S_n=\displaystyle \sum_{k=1}^{n^3-1}\displaystyle \frac{1}{k\ log\ k}$

(1)
$2 \leqq k$:自然数
$\displaystyle \frac{1}{(k+1)log(k+1)} \lt \displaystyle \int_{k}^{k+1}\displaystyle \frac{dx}{x\ log\ x} \lt \displaystyle \frac{1}{k\ log\ k}$

(2)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。

出典:2012年神戸大学 入試問題
投稿日:2022.07.17

<関連動画>

不定方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは実数である.
$a+b+c=\sqrt{45}$
$a^2+b^2+c^2=15$
$a^4+b^4+c^4=?$
これを解け.
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$63^{13}$ VS $33^{16}$
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=3^y$
$4^{\frac{x}{y}} + 3^{\frac{y}{x}}=?$
この動画を見る 

指数の計算 敬愛学園  令和4年度 2022 入試問題100題解説92問目!

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{13}+2^{13}+2^{14}+2^{15}=2^▢$

2022敬愛学園
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?$ e\fallingdotseq 2,71$

$6^{\sqrt7}$ VS $7^{\sqrt6}$
この動画を見る 
PAGE TOP