【数学】中2-9 文字式の利用① 基本編 - 質問解決D.B.(データベース)

【数学】中2-9 文字式の利用① 基本編

問題文全文(内容文):
空欄を埋めよ。
整数$m,n$を使ってどう表す?
①3の倍数→____
②7の倍数→____
③偶数→____
④奇数→____
⑤連続する3つの偶数
→____,____,____
⑥連続する3つの奇数
→____,____,____
⑦連続する3つの整数
→____,____,____
⑧2つの偶数
→____,____
⑨2つの奇数
→____,____
⑩3で割ると2余る数
→____

◎連続する3つの奇数の和は
3の倍数になることを説明しよう!

【説明】$n$を⑪____とすると、
連続する3つの奇数は、それぞれ
⑫____,⑬____,⑭____と表される。
( ⑫ )+( ⑬ )+( ⑭ )
⑮____=⑯____
⑰____は⑱____なので、
⑯____は3の倍数になる。
よって、連続する3つの奇数の和は
3の倍数になる。
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。
整数$m,n$を使ってどう表す?
①3の倍数→____
②7の倍数→____
③偶数→____
④奇数→____
⑤連続する3つの偶数
→____,____,____
⑥連続する3つの奇数
→____,____,____
⑦連続する3つの整数
→____,____,____
⑧2つの偶数
→____,____
⑨2つの奇数
→____,____
⑩3で割ると2余る数
→____

◎連続する3つの奇数の和は
3の倍数になることを説明しよう!

【説明】$n$を⑪____とすると、
連続する3つの奇数は、それぞれ
⑫____,⑬____,⑭____と表される。
( ⑫ )+( ⑬ )+( ⑭ )
⑮____=⑯____
⑰____は⑱____なので、
⑯____は3の倍数になる。
よって、連続する3つの奇数の和は
3の倍数になる。
投稿日:2013.03.16

<関連動画>

筆算なしで!

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$1428 \times 1572 - 428 \times 572$ =
この動画を見る 

【簡潔に予習・復習!】多項式(式の利用):教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
多項式に関して解説していきます.
この動画を見る 

【高校受験対策】数学-死守20

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#数と式#比例・反比例#確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#単位・比と割合・比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(-2)+11$を計算しなさい.

②$(- 4) ^ 2 \times (- 3)$を計算しなさい.

③$(6a - 15b) \div 3$を計算しなさい.

④$(2x - 1)(x + 3)$を展開しなさい.

⑤$x ^ 2 - (y + 3) ^ 2$ を因数分解しなさい.

⑥方程式$\dfrac{x - 2}{4} + \dfrac{2 - 5x}{6} = 1$を解きなさい.

⑦$y$は$x$に反比例し,$x = 2$ のとき $y = - 3$ である.
このとき,$y$を$x$の式で表しなさい.

⑧次のア~オの中から,無理数をすべて選び,記号で答えなさい.

ア.$\dfrac{1}{3}$
イ.$\sqrt5$
ウ.$0.25$
エ.$-2\sqrt3$
オ.$\sqrt6$

⑨右の図のア~エは,関数$y = ax ^ 2$のグラフである.
次の(1),(2)の問いに答えなさい.

(1)関数$y=\dfrac{1}{2}x^2$のグラフを,ア~エから選びなさい.

(2)$x$の値が$-2$から$-1$まで増加するときの
変化の割合が最も大きい関数のグラフを,ア~エから選びなさい.
また,そのときの変化の割合を求めなさい.

⑩袋の中に$0,1,2,3$の数字が1つずつ書かれた4個の玉が入っている.
この袋から玉を1個取り出して玉に書かれた数字を確認して,
それを袋の中にもどしてから,また1個取り出すとき,

(1)取り出した2個の玉に書かれていた数字が同じになる確率を求めなさい.

(2)次の$\Box$に適することばを入れて,
求める確率が$\dfrac{1}{4}$となる問題を1つ完成させなさい.
「取り出した2個の玉の数字の積が$\Box$になる確率を求めなさい.」

図は動画内参照
この動画を見る 

高等学校入学試験予想問題:鳥取県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#平面図形#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $

(4)$ 2x^2+3x-1=0 $
$ x=? $

$ \boxed{2}$

$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?

$\boxed{3}$

$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
この動画を見る 

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 
PAGE TOP