加法定理の証明をベクトルで - 質問解決D.B.(データベース)

加法定理の証明をベクトルで

問題文全文(内容文):
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cosα・cosβ+sinα・sinβ =

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cosα・cosβ+sinα・sinβ =

投稿日:2021.05.23

<関連動画>

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問6_三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
この動画を見る 

福田の数学〜中央大学2022年理工学部第2問〜三角関数と2直線のなす角

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$AB = 1, \angle ABC = 90°,\angle BCA = 7.5°$である$△ABC$ の辺BC 上に $AD = CD$ と
なるように点Dをとる。このとき、$BD = \boxed{コ}, CD=\boxed{サ}$である。したがって、
$\tan 7.5° =\frac{1}{\boxed{コ}+\boxed{サ}}$
次に、正の実数kに対して、2直線$y=3kx, y = 4kx$のなす角度を$θ$とする。
だし、$0° \lt θ \lt 90°$である。このとき、$\tanθ = \boxed{シ}$である。したがって、$\tanθ$ は
$k =\frac{1}{\boxed{ス}}$ のとき最大値$\frac{1}{\boxed{セ}}$ をとる。また、$k=\frac{1}{\boxed{ス}}$ のとき$\boxed{ソ}$を満たす。
なお、必要ならば
$\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...$
を用いてよい。

$\boxed{コ},\boxed{サ}$の解答群
$ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3$
$ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6$

$\boxed{シ}$の解答群
$ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}$
$ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}$
$ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}$

$\boxed{ス},\boxed{セ}$の解答群
$ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2$
$ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2$

$\boxed{ソ}$の解答群
$ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°$

2022中央大学理工学部過去問
この動画を見る 

【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
この動画を見る 

福田のわかった数学〜高校2年生085〜三角関数(24)重要な変形(2)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(24) 重要な変形(2)
$\triangle ABC$において
$\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$
を証明せよ。 
この動画を見る 

福田のおもしろ数学293〜三角方程式を満たす正の整数xの最小値

アイキャッチ画像
単元: #図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数とグラフ#加法定理とその応用
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \tan 19x^{\circ}\ =\ \frac{\cos 96^{\circ}+\sin 96^{\circ}}{\cos 96^{\circ}-\sin 96^{\circ}}\ $を満たす最小の正の整数$\ x\ $を求めよ。
この動画を見る 
PAGE TOP