伝説の東大入試問題 π>3.05を証明せよ 高校数学 Japanese university entrance exam questions Tokyo University - 質問解決D.B.(データベース)

伝説の東大入試問題 π>3.05を証明せよ 高校数学 Japanese university entrance exam questions Tokyo University

問題文全文(内容文):
伝説の東大入試問題

π>3.05を証明せよ
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
伝説の東大入試問題

π>3.05を証明せよ
投稿日:2018.04.02

<関連動画>

福田の数学〜青山学院大学2025理工学部第5問〜鋭角三角形の条件と垂心の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$\triangle OAB$は鋭角三角形であり、

$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$

を満たしている。

$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。

(1)$k$のとり得る値の範囲を求めよ。

上で与えた$\triangle OAB$の頂点$A,B$から

それぞれの対辺に下ろした$2$本の垂線の交点

を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。

(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。

(3)$3$点$O,H,C$が同一直線上にあるとき、

$k$の値と$\dfrac{OH}{OC}$を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る 

立命館大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 55x^2+2xy+y^2=2007$をみたす整数(x,y)をすべて求めよ.

立命館大過去問
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第4問〜確率と期待値と無限級数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

当たりくじが$3$本入っている$9$本のくじがある。
このくじを無作為に$1$本引き、
当たりくじかどうかを確認してから元に戻す試行を、
当たりくじが出るまで繰り返す。
当たりくじが出たときのみ得点を得ることができ、
$n$回目にの試行で当たりくじが出た場合、
得られる得点は$50n$点とする。

$n$回目に得られる得点の期待値を$E_n$とする。
ただし、$n$は自然数とする。

(1)$5$回目までに当たりくじが出る確率は$\boxed{ノ}$である。

(2)$\dfrac{E_n}{E_{n+1}}=\dfrac{10}{7}$であるとき、$n=\boxed{ハ}$である。

(3)$\displaystyle \lim_{n\to\infty}\dfrac{E_n}{E_{n+1}}$を求めると$\boxed{ヒ}$である。

(4)$\displaystyle \sum_{k=1}^{n}E_k$を$n$の式で表すと$\boxed{フ}$であり、

$\displaystyle \sum_{k=1}^{\infty}E_k$を求めると$\boxed{ヘ}$である。

ただし、$\vert r \vert \lt 1$を満たす実数$r$に対し、

$\displaystyle \lim_{n\to\infty}n \times r^n=0$が

成り立つこととする。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

山梨大(医)整数問題 解説:ヨビノリたくみ Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の整数
$log_{a}b$が有理数ならば、自然数$m,n$と2以上の整数が存在して、$a=c^m,b=c^n$と表せることを示せ

出典:山梨大学 過去問
この動画を見る 
PAGE TOP