【考えすぎると…!】計算:大阪教育大学附属高等学校平野校舎~全国入試問題解法 - 質問解決D.B.(データベース)

【考えすぎると…!】計算:大阪教育大学附属高等学校平野校舎~全国入試問題解法

問題文全文(内容文):
$ \sqrt{(\pi-3)^2}+\sqrt{(3-\pi)^2}$の値を,$\pi$を用いて簡単に表しなさい.
※$ \pi $は円周率を表すものとする.

大教大高校平野過去問
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#大阪教育大学附属高等学校平野校舎
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{(\pi-3)^2}+\sqrt{(3-\pi)^2}$の値を,$\pi$を用いて簡単に表しなさい.
※$ \pi $は円周率を表すものとする.

大教大高校平野過去問
投稿日:2023.09.06

<関連動画>

【この形!どの形?】平方根:渋谷教育学園幕張高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の計算をしなさい.
$\dfrac{2+\sqrt2}{\sqrt3+1}-\dfrac{\sqrt2}{\sqrt3-\sqrt2}+\dfrac{\sqrt6-3}{\sqrt2-2}$

渋谷教育学園幕張高等学校過去問
この動画を見る 

サクサク解こう

アイキャッチ画像
単元: #平方根#数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x \geqq 0,y \geqq 0$とする.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=19 \\
x\sqrt y+y\sqrt x=15
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

眠れない夜に学ぶ数学~全国入試問題解法 #shorts #数学 #sound

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x-\dfrac{\sqrt2-2}{2}$のとき,$x^2+2x+\dfrac{1}{x+1}+1$の値を求めなさい.

立命館高校過去問
この動画を見る 

大阪教育大 複雑な3乗根の外し方

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ

出典:大阪教育大学
この動画を見る 
PAGE TOP