どっちがでかい?僅差! - 質問解決D.B.(データベース)

どっちがでかい?僅差!

問題文全文(内容文):
$2^{\sqrt{5}}と3^{\sqrt{2}}ではどちらが大きいか?$
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{\sqrt{5}}と3^{\sqrt{2}}ではどちらが大きいか?$
投稿日:2023.03.17

<関連動画>

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらの方が大きいか?
$2^{186}$ VS $3^{114}$
この動画を見る 

福田のわかった数学〜高校2年生089〜指数対数(2)指数法則を使う計算(2)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(2) 指数法則(2)\\
(1)\sqrt[3]{54}×\sqrt7×\sqrt[4]{14}×\frac{1}{\sqrt[4]{490}}×\sqrt[4]{10}×\frac{1}{\sqrt[4]7}×\frac{1}{\sqrt[12]2}\\
(2)\sqrt[3]{54}+\frac{3}{2}\sqrt[6]4+\sqrt[3]{-\frac{1}{4}}\\
\\
\frac{1}{\sqrt[3]2+1}の分母を有理化せよ。
\end{eqnarray}
この動画を見る 

素数になる4次式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
mは整数である.
$m^4+5m^3+6m^2+5m+1$が素数となるmをすべて求めよ.
この動画を見る 

どっちがでかい?問題作成の裏側

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 127^{22}$ vs $33^{31}$
どちらが大きいか?
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]二つの関数f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2} について考える。\\
(1)f(0)=\boxed{\ \ セ\ \ }, g(0)=\boxed{\ \ ソ\ \ }\ である。また、f(x)は\\
相加平均と相乗平均の関係から、x=\boxed{\ \ タ\ \ }で最小値\boxed{\ \ チ\ \ }をとる。\\
g(x)=-2となるxの値は\log_2(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ })である。\\
\\
(2)次の①~④は、xにどのような値を代入しても常に成り立つ。\\
f(-x)=\boxed{\ \ ト\ \ } \ldots①  g(-x)=\boxed{\ \ ナ\ \ } \ldots②\\
\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{\ \ ニ\ \ } \ldots③  
g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x) \ldots④\\
\\
\boxed{\ \ ト\ \ }、\boxed{\ \ ナ\ \ }の解答群\\
⓪f(x)    ①-f(x)    ②g(x)    ③-g(x)
\\
\\
(3)花子:①~④は三角関数の性質に似ているね。\\
太郎:三角関数の加法定理に類似した式(\textrm{A})~(\textrm{D})を考えてみたけど、常に\\
成り立つ式はあるだろうか。\\
花子:成り立たない式を見つけるために、式(\textrm{A})~(\textrm{D})の\betaに\\
何か具体的な値を代入して調べてみたら?\\
\\
太郎さんが考えた式\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A}) 
f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C}) 
f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})\\
\\
(1),(2)で示されたことのいくつかを利用すると、式(\textrm{A})~(\textrm{D})のうち、\\
\boxed{\ \ ネ\ \ }以外の3つは成り立たないことが分かる。\boxed{\ \ ネ\ \ }は左辺と右辺を\\
それぞれ計算することによって成り立つことが確かめられる。\\
\\
\boxed{\ \ ネ\ \ }の解答群\\
⓪(\textrm{A})   ①(\textrm{B})   ②(\textrm{C})   ③(\textrm{D})
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 
PAGE TOP