【共通テスト】数学IA 第3問確率がめっちゃ簡単になる本質テクニック、教えます(2023年本試) - 質問解決D.B.(データベース)

【共通テスト】数学IA 第3問確率がめっちゃ簡単になる本質テクニック、教えます(2023年本試)

問題文全文(内容文):
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です

球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です

球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
投稿日:2023.12.20

<関連動画>

トランプシャッフルして,元に戻る確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
トランプを適当にシャッフルしてA~Kまで52枚全部順番で揃う確率はどのくらいですか?
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第2問〜2点の移動に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
表と裏が出る確率がそれぞれ $\frac{1}{2}$ である硬貨がある。座標平面において、原点 $(0,0)$ に置かれた点 $\mathrm{A}$ および座標 $(1,0)$ に置かれた点 $\mathrm{B}$ を、硬貨を $1$ 回投げるごとに以下の規則 $(R)$ に従って動かし、 $n$ 回硬貨を投げた直後における点 $\mathrm{A,B}$ の位置について考える。
規則 $(R)$:
・表が出たとき、 $\mathrm{A}$ は動かさず、 $\mathrm{B}$ は $\mathrm{A}$ を中心に反時計回りに $90^{\circ}$ 回転した位置に動かす。
・裏が出たとき、$\mathrm{B}$ は動かさず、 $\mathrm{A}$ は $\mathrm{B}$ を中心に反時計回りに $90^{\circ}$ 回転した位置に動かす。
$(1)$ $n=10$ のとき、$\overrightarrow{\mathrm{AB}}=(\fbox{タ},\fbox{チ})$
$(2)$ $n=3$ のとき、 $\mathrm{A}$ が位置することが可能な座標の総数は $\fbox{ツ}$ である。
$(3)$ $n=4$ のとき、 $\mathrm{A}$ が原点にある確率は $\displaystyle \frac{\fbox{テ}}{\fbox{ト}}$ であり、 $\mathrm{A}$ が $x$ 軸上にある確率は $\displaystyle \frac{\fbox{ナ}}{\fbox{ニ}}$ である。
$(4)$ $n=8$ のとき、 $\mathrm{A}$ が原点にある確率は $\displaystyle \frac{\fbox{ヌ}}{\fbox{ネ}}$ であり、 $\mathrm{A}$ が $x$ 軸上にある確率は $\displaystyle \frac{\fbox{ノ}}{\fbox{ハ}}$ である。
この動画を見る 

【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。

このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}

(1)$A \cap B$={6,12}

(2)$A \cup B$={2,3,4,6,8,9,10,12}

(3)$\overline{ A }$={1,3,5,7,9,11}

(4)$\overline{ B }$={1,2,4,5,7,8,10,11}

(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}

(6)$\overline{ A }$$\cap B$={3,9}

(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}

(8)$\overline{ A \cup B }$={1,5,7,11}

-----------------

全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。

(1)$A \cup B$={2,3,5,6,7,9}

(2)$A$={2,3,5,7}

(3)$B$={3,6,9}
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(4)〜空間内の格子点から正三角形ができる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(4)次の操作(*)を考える。
(*)1個のさいころを3回続けて投げ、出た目を順に$a_1$, $a_2$, $a_3$とする。
$a_1$, $a_2$, $a_3$を3で割った余りをそれぞれ$r_1$, $r_2$, $r_3$とするとき、座標空間の点($r_1$, $r_2$, $r_3$)を定める。
この操作(*)を3回続けて行い、定まる点を順に$A_1$, $A_2$, $A_3$とする。このとき、$A_1$, $A_2$, $A_3$が正三角形の異なる3頂点となる確率は$\boxed{\ \ エ\ \ }$である。
この動画を見る 

福田の数学〜東京大学2023年理系第2問〜隣どうしにならない順列と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 黒玉3個、赤玉4個、白玉5個が入っている袋から玉を1個ずつ取り出し、取り出した玉を順に横一列に12個すべて並べる。ただし、袋から個々の玉が取り出される確率は等しいものとする。
(1)どの赤玉も隣り合わない確率pを求めよ。
(2)どの赤玉も隣り合わないとき、どの黒玉も隣り合わない条件付き確率qを求めよ。

2023東京大学理系過去問
この動画を見る 
PAGE TOP