大学入試問題#755「基本問題」 北海道大学(1970) #微分方程式 - 質問解決D.B.(データベース)

大学入試問題#755「基本問題」 北海道大学(1970) #微分方程式

問題文全文(内容文):
$f(x)$は$x \gt 0$で定義された正の値をとる微分可能な関数で
$\{f(x)\}^2=x+1+\displaystyle \int_{1}^{x} \{f(t)\}^2dt$を満たすものとする。

(1)$y=f(x)$の満たす1階微分方程式を求めよ。
(2)$y=f(x)$を任意定数を含まない形で求めよ。

出典:1970年北海道大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$f(x)$は$x \gt 0$で定義された正の値をとる微分可能な関数で
$\{f(x)\}^2=x+1+\displaystyle \int_{1}^{x} \{f(t)\}^2dt$を満たすものとする。

(1)$y=f(x)$の満たす1階微分方程式を求めよ。
(2)$y=f(x)$を任意定数を含まない形で求めよ。

出典:1970年北海道大学 入試問題
投稿日:2024.03.05

<関連動画>

大学入試問題#792「初手が重要!!」 #室蘭工業大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+x-2}{(2x+1)(x^2+x+1)}$と定める。
定積分$\displaystyle \int_{0}^{\frac{\pi}{2}} f(\cos^2x) \sin(2x)dx$の値を求めよ。

出典:2020年室蘭工業大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第5問〜空間の領域に位置する直方体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} xyz空間において、直方体ABCD-EFGHがz \geqq x^2+y^2\\
(0 \leqq z \leqq 1)を満たす立体の周辺および内部に存在する。この\\
直方体の面ABCD,EFGHはxy平面に平行であり、頂点A,B,C,D\\
は平面z=1上に、頂点E,F,G,Hは曲面z=x^2+y^2上に存在する。\\
\\
(1)直方体ABCD-EFGHの面ABCDおよびEFGHが1辺の長さa\\
の正方形のとき、正の実数であるaの取り得る値の範囲は\\
0 \lt a \lt \sqrt{\boxed{\ \ アイ\ \ }}であり、この直方体の体積は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}a^4+\boxed{\ \ キク\ \ }a^2\\
である。\\
\\
(2)直方体ABCD-EFGHの面ABFEおよびDCGHが1辺の長さb\\
の正方形のとき、正の実数であるbの取り得る値の範囲は\\
0 \lt b \lt \boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}であり、この直方体の体積は\\
b^2\sqrt{\boxed{\ \ ソタ\ \ }b^2+\boxed{\ \ チツ\ \ }b+\boxed{\ \ テト\ \ }}である。\\
\\
(3)直方体ABCD-EFGHの全ての面が1辺の長さcの正方形のとき、すなわち\\
直方体ABCD-EFGHが立方体のとき、正の実数であるcの値は\\
\boxed{\ \ ナニ\ \ }+\sqrt{\boxed{\ \ ヌネ\ \ }}であり、立方体ABCD-EFGHの体積は\\
\boxed{\ \ ノハヒ\ \ }+\boxed{\ \ フヘ\ \ }\sqrt{\boxed{\ \ ホマ\ \ }}である。
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(1)〜絶対値の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)方程式$4||x|-1|=x+2$の解を全て求めると$x=\boxed{\ \ あ\ \ }$ となる。

2022慶應義塾大学医学部過去問
この動画を見る 

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 

大学入試問題#630「落ち着いて慌てない」 東京理科大学(2015) #指数対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{2^x-2^{-x}}{2}$とする
$f(b)=\displaystyle \frac{15}{8}$のとき
$f(b+log_23)$の値を求めよ

出典:2015年東京理科大学 入試問題
この動画を見る 
PAGE TOP