大学入試問題#44 明治大学(2021) 複素数 - 質問解決D.B.(データベース)

大学入試問題#44 明治大学(2021) 複素数

問題文全文(内容文):
|z|=2のとき
|z2+iz1|のとりうる値の範囲を求めよ。

出典:2021年明治大学 入試問題
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
|z|=2のとき
|z2+iz1|のとりうる値の範囲を求めよ。

出典:2021年明治大学 入試問題
投稿日:2021.11.06

<関連動画>

【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)3+i (2)2+2i
この動画を見る 

京都大 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2Z+2iZ+2i=Z¯を満たす複素数Zをすべて求めよ

出典:2005年京都大学 過去問
この動画を見る 

秋田大 慶応大 3次方程式 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数列とその和(等差・等比・階差・Σ)#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#秋田大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
2x33x2+ax1=0の1つの解はx=12,他の解をα,βとしたとき、α30+β30の値

慶応義塾大学過去問題
k=1nk2k+2の値をnで表せ
この動画を見る 

自治医大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023自治医科大学過去問題
kは実数
x36x2+kx7=0
の3つの解は複素数平面で1辺の長さが3の正三角形の頂点となる
kの値
この動画を見る 

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、w=z2z+1はどのような図形を描くか
この動画を見る 
PAGE TOP preload imagepreload image