整数の性質 4STEP数A 270,271,272 素因数分解から考える問題 【ゆう☆たろうがていねいに解説】 - 質問解決D.B.(データベース)

整数の性質 4STEP数A 270,271,272 素因数分解から考える問題 【ゆう☆たろうがていねいに解説】

問題文全文(内容文):
270:次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数
271:(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。
272:次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(1)1から300までの300個の自然数の積N=1・2・3・・・300
チャプター:

0:00 問題270の解説
5:21 問題271の解説
8:26 問題272の解説
10:37 エンディング

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質
指導講師: 理数個別チャンネル
問題文全文(内容文):
270:次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数
271:(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。
272:次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(1)1から300までの300個の自然数の積N=1・2・3・・・300
投稿日:2023.06.13

<関連動画>

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ p,qを相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。\\
・係数はすべて整数1でx^2の係数は1である。\hspace{100pt}\\
・f(1)=pqである。\hspace{193pt}\\
・方程式f(x)=0は整数解をもつ。\hspace{135pt}\\
以下の問いに答えよ。\hspace{200pt}\\
\\
(1)f(x)をすべて求めよ。\hspace{170pt}\\
(2)(1)で求めたものをf_1(x),f_2(x),\ldots,f_m(x)とする。2m次方程式\hspace{3pt}\\
f_1(x)×f_2(x)×\ldots×f_m(x)=0\hspace{100pt}\\
の相異なる解の総和はp,qによらないことを示せ。\hspace{60pt}
\end{eqnarray}
この動画を見る 

【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは1 (1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る 

整数問題 あれを使えばスッキリ解決

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bが互いに素ならば、abとa²-b²も互いに素であることを示せ
この動画を見る 

整数問題の難問!誘導ありでも難しいです【九州大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$m,n$が、$n^4=1+210m^2$ ・・・①を満たすとき,以下の問いに答えよ。

(1)$\displaystyle \frac{n^2+1}{2},\displaystyle \frac{n^2-1}{2}$は互いに素な整数であることを示せ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(2)〜ガウス記号と倍数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)nを奇数とする。nと[\frac{3n+2}{2}]の積が6の倍数であるための必要十分条件は、\\
nを\boxed{\ \ エ\ \ }で割った時の余りが\boxed{\ \ オ\ \ }となるときである。ただし、\\
実数xに対しxを超えない最大の整数を[x]と表す。また、\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }は0 \leqq \boxed{\ \ オ\ \ } \lt \boxed{\ \ エ\ \ }\\
を満たす整数である。\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }を求める過程を解答欄に記述しなさい。
\end{eqnarray}
この動画を見る 
PAGE TOP