問題文全文(内容文):
$x^n+a_{n-1}x^{n-1}+・・・・・・+a_1x+a_0=0$という$x$の$n$次方程式が
$1+\sqrt3$を解にもつとき$1-\sqrt3$も解であることを示せ.
$a_i(i=0$~$n-1$)は有理数である.
2009大阪大(改)過去問
$x^n+a_{n-1}x^{n-1}+・・・・・・+a_1x+a_0=0$という$x$の$n$次方程式が
$1+\sqrt3$を解にもつとき$1-\sqrt3$も解であることを示せ.
$a_i(i=0$~$n-1$)は有理数である.
2009大阪大(改)過去問
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^n+a_{n-1}x^{n-1}+・・・・・・+a_1x+a_0=0$という$x$の$n$次方程式が
$1+\sqrt3$を解にもつとき$1-\sqrt3$も解であることを示せ.
$a_i(i=0$~$n-1$)は有理数である.
2009大阪大(改)過去問
$x^n+a_{n-1}x^{n-1}+・・・・・・+a_1x+a_0=0$という$x$の$n$次方程式が
$1+\sqrt3$を解にもつとき$1-\sqrt3$も解であることを示せ.
$a_i(i=0$~$n-1$)は有理数である.
2009大阪大(改)過去問
投稿日:2020.09.22