大阪大 共役な無理数 - 質問解決D.B.(データベース)

大阪大 共役な無理数

問題文全文(内容文):
$x^n+a_{n-1}x^{n-1}+・・・・・・+a_1x+a_0=0$という$x$の$n$次方程式が
$1+\sqrt3$を解にもつとき$1-\sqrt3$も解であることを示せ.
$a_i(i=0$~$n-1$)は有理数である.

2009大阪大(改)過去問
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^n+a_{n-1}x^{n-1}+・・・・・・+a_1x+a_0=0$という$x$の$n$次方程式が
$1+\sqrt3$を解にもつとき$1-\sqrt3$も解であることを示せ.
$a_i(i=0$~$n-1$)は有理数である.

2009大阪大(改)過去問
投稿日:2020.09.22

<関連動画>

絶対値と式の値 岡山理科大

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x-\frac{1}{x}=2$
$|x+\frac{1}{x}|=?$

岡山理科大学
この動画を見る 

【図でイメージする!】2次関数の最大値と最小値の問題はこう解く!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
2次関数の値の範囲と最大値・最小値
①$y=x^2-2x+1$を定義域(0 \leqq x \leqq 3)でグラフをかけ

②$y=2x^2-4x+1$について$-1 \leq z \leq 2$の範囲での最大値と最小値を求めよ

③$y=-3x^2-4x-1$について$1 \leq z \leq 3$の範囲での最大値と最小値を求めよ
この動画を見る 

「三角比(方程式と不等式)」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の三角方程式、不等式を解け。
ただし、$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$とする。
(1)
$\cos\theta=\displaystyle \frac{1}{2}$
$\theta=60^{ \circ }$

(2)
$\sin\theta=\displaystyle \frac{1}{\sqrt{ 2 }}$
$\theta=45^{ \circ },135^{ \circ }$

(3)
$\tan\theta=\displaystyle \frac{1}{\sqrt{ 3 }}$
$\theta=150^{ \circ }$

(4)
$2\cos\theta+\sqrt{ 3 }=0$
$\cos\theta=-\displaystyle \frac{\sqrt{ 3 }}{2}$より
$\theta=150^{ \circ }$

(5)
$\sqrt{ 3 }\tan\theta-3=0$
$\tan\theta=\sqrt{ 3 }$より
$\theta=60^{ \circ }$

(6)
$2\sin^2\theta-5\cos\theta+1=0$
$2(1-\cos^2\theta)-5\cos\theta+1=0$
$2\cos^2\theta+5\cos\theta-3=0$
$-1 \leqq \cos\theta \leqq 1$より$\cos\theta+3=0$
したがって$2\cos\theta-1=0$
$\cos\theta=\displaystyle \frac{1}{2}$より$\theta=60^{ \circ }$
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問4

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問4. a,bを定数とします。放物線$y=-x^2+4ax+b$ について、次の問いに答えなさい。
(5) 頂点の座標をa,bを用いて表しなさい。この問題は答えだけを書いてください。
(6) 放物線 $y=-x^2$ をx軸方向に1、y軸方向に5だけ平行移動したところ、上の放物線になりました。このとき、a,bの値をそれぞれ求めなさい。
この動画を見る 

5次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4=\dfrac{11x^6}{6x-11}$
これを解け.
この動画を見る 
PAGE TOP