福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面

問題文全文(内容文):
$x_0=0,y_0=-1$のとき、非負整数$n\geqq 0$に対して、
$x_{n+1}=(\cos \frac{3\pi}{11})x_n-(\sin \frac{3\pi}{11)}y_n$
$y_{n+1}=(\cos \frac{3\pi}{11})x_n+(\sin \frac{3\pi}{11)}y_n$
のとき、$x_n$が最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$x_0=0,y_0=-1$のとき、非負整数$n\geqq 0$に対して、
$x_{n+1}=(\cos \frac{3\pi}{11})x_n-(\sin \frac{3\pi}{11)}y_n$
$y_{n+1}=(\cos \frac{3\pi}{11})x_n+(\sin \frac{3\pi}{11)}y_n$
のとき、$x_n$が最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
投稿日:2023.10.15

<関連動画>

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

もっちゃんと学ぶ数学 Σの公式 導出

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k=?$

$\displaystyle \sum_{k=1}^n k^2=?$
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式

単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。

ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

2021慶應義塾大学整合政策学部過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第5問〜確率漸化式と整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 1個のさいころをn回投げて、k回目に出た目を$a_k$とする。$b_n$を
$b_n$=$\displaystyle\sum_{k=1}^na_1^{n-k}a_k$
により定義し、b_nが7の倍数とする確率を$p_n$とする。
(1)$p_1$, $p_2$を求めよ。
(2)数列$\left\{p_n\right\}$の一般項を求めよ。

2023大阪大学理系過去問
この動画を見る 
PAGE TOP