数学オリンピック ベラルーシ 整数 - 質問解決D.B.(データベース)

数学オリンピック ベラルーシ 整数

問題文全文(内容文):
$a,b,c$は自然数であり,$P$は素数である.
$a+b=b(a-c)$,$c+1=P^2$なら$a+b$か$ab$は平方数であることを示せ.
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数であり,$P$は素数である.
$a+b=b(a-c)$,$c+1=P^2$なら$a+b$か$ab$は平方数であることを示せ.
投稿日:2021.01.20

<関連動画>

福田のおもしろ数学035〜2001年数学オリンピックの名作〜13で割った余りを求める

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2001^{2001}$を13で割ったあまりを求めよ

2001数学オリンピック過去問
この動画を見る 

ギリシア 数学オリンピック 簡単

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3・2^x+4-n^2$
$x,n$は自然数とする.$x$の値を求めよ.
この動画を見る 

福田のおもしろ数学015〜ジュニア数学オリンピック本戦問題〜2つの式を満たす4つの自然数を求める

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab
\end{array}
\right.
\end{eqnarray}$
を満たす正の整数 $a,b,c,d$は?

ジュニア数学オリンピック過去問
この動画を見る 

場合の数 数学オリンピック予選

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)

出典:数学オリンピック 予選問題
この動画を見る 

福田のおもしろ数学053〜数学オリンピックの幾何の問題〜線分の長さを求める

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#方べきの定理と2つの円の関係#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
DB = BC = 2 , AB = AC, 直線 AC と直線 DC は点 A, D で円 O に接している。
直線AB と円 O の交点のうち A でない方を E とし、直線 CE と円 O の交点のうち E でない方を F とする。
線分 EF の長さを求めよ。
※図は動画内参照

数学オリンピック過去問
この動画を見る 
PAGE TOP