記数法の基本問題 京都府立大 - 質問解決D.B.(データベース)

記数法の基本問題 京都府立大

問題文全文(内容文):
2020京都府立大学過去問題
$N = abc_{(5)}$
$= cba_{(6)}$
Nは十進法でいくつ?
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2020京都府立大学過去問題
$N = abc_{(5)}$
$= cba_{(6)}$
Nは十進法でいくつ?
投稿日:2023.07.17

<関連動画>

福田のおもしろ数学422〜10変数の不定方程式の解の個数

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a_i (i=1,2,\cdots ,10)$はすべて整数であり、

$ \vert a_1 \vert \leqq 1$かつ

${a_1}^2+{a_2}^2+\cdots + {a_{10}}^2 $

$\quad \quad -a_1a_2-a_2a_3-\cdots a_{10}a_1=2$

を満たしている。

このような$(a_1,a_2,a_3,\cdots a_{10})$は何組あるか?
   
この動画を見る 

福田の数学〜効率よく数えることが大切〜慶應義塾大学2023年環境情報学部第4問〜移動する2点が接触しない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
xy平面上でx座標もリ座標も整数である点を格子点という。この格子点上を次のように点 A と点 B が移動する。
・点 A は、時刻t= 0 において原点 O にあり、時刻tが 1 増えるごとに、x軸正方向に 1 あるいはy軸正方向に 1 のいずれかに等確率$\frac{1}{2}$で移動する。
・点 B は、時刻t= 0 において点( 1 , I) にあり、時刻 t が 1 増えるごとに、x軸正方向に 1 あるいはx軸負方向に 1 あるいはy軸正方向に 1 あるいはy軸負方向に 1のいずれかに等確率$\frac{1}{4}$で移動する。
ここで、時刻 t= k(k= 0 , 1 , 2 , 3 ,・・・)以前に点 A と点 B が一度も接触しない(同じ時刻に同じ座標を取らない)確率を P (k)とする。
(1)k0,1,2のとき、P(0)=1、P(1)=$\dfrac{\fbox{ア}}{\fbox{イ}}$,P(2)=$\dfrac{\fbox{ウ}}{\fbox{エ}}$である。
(2)k=3のとき、
(a)点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 3 , 0 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{オ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{カ}$通り。
(b) 点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 2 , l) に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{キ}$通り。 3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{ク}$通り。
(c) 点 A が点( 1 , 0 )と点( 1 , 1) を経由して点( 2 , 1 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
(d) 点 A が点( 0 , 1) と点( 1 , 1) を経由して点( 2 , 1) に移動する場合、 t= 3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
であるから、$P(3)=\dfrac{\fbox{サ}}{\fbox{シ}}$である。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{3n^2-5n+218}{3n-2}$が整数となる自然数$n$を求めよ.
この動画を見る 

九州大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は3の倍数でない整数
$f(x)=2x^3+a^2x^2+2b^2x+1$

(1)
$f(1),f(2)$を3で割った余りは?

(2)
$f(x)=0$は整数解がないことを証明せよ

(3)
$f(x)=0$が有理数解が存在する
$(a,b)$の組をすべて求めよ

出典:2018年九州大学 過去問
この動画を見る 

場合の数 並び替え基本【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・6個の数字1,2,3,4,5,6から異なる4種の数字を使って4桁の整数を作るとき、次のような整数は何個あるか。
(1)4300より大きい整数
(2)5000より大きい整数

・女子5人、男子3人が1列に並ぶとき、次の並び方は何通りあるか。
(1)女子5人が続いて並ぶ。
(2)女子5人、男子3人がそれぞれ続いて並ぶ。
(3)両端が男子である。
(4)どの男子も隣合わない。

・男子4人、女子4人が男女交互に1列に並ぶ方法は何通りあるか。
この動画を見る 
PAGE TOP