東大 大島さんと数学 球の体積 - 質問解決D.B.(データベース)

東大 大島さんと数学 球の体積

問題文全文(内容文):
球の体積の求め方を解説していきます.
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
球の体積の求め方を解説していきます.
投稿日:2021.08.20

<関連動画>

東大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^2$と$y=-(x-a)^2+b$とによって囲まれる面積が$\displaystyle \frac{1}{3}$となるための必要十分条件を$a,b$を用いて表せ

出典:1975年東京大学 過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】面積からの定数決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=ax-x^2~(a > 0)$と$x$軸で囲まれた図形の面積が$\dfrac92$になるように、定数$a$の値を求めよ。
この動画を見る 

数学「大学入試良問集」【12−6 放物線と接線で囲まれた面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京都立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$y=x^2$のグラフを$r$とする。
$b \lt a^2$をみたす点$P(a,b)$から$r$へ接線を2本引き、接点を$A,B$とする。
$r$と2本の線分$PA,PB$で囲まれた図形の面積が$\displaystyle \frac{2}{3}$になるような点$P$の軌跡を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】領域の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を同時に満たす点$(x,y)$の存在する部分の面積を求めよ。
$y\geqq x^2+1,y\geqq x+3,y\leqq x+7$
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第4問〜ピラミッドを切って体積を求める

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$(1)$xyz$空間において$|x|+|y|+|z| \leqq 1$を満たす立体の体積は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
(2)aを実数としたとき、xyz空間において
$|x-a|+|y-a|+|z| \leqq 1,\ \ \ x \geqq 0,\ \ \ y \geqq 0,\ \ \ z \geqq 0$
を満たす立体の体積V(a)は

$(\textrm{a})a \lt \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$のとき、$V(a)=0$,
$(\textrm{b})\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }} \leqq a \lt 0$のとき、
$V(a)=\frac{\boxed{\ \ ケコ\ \ }a^3+\boxed{\ \ サシ\ \ }a^2+\boxed{\ \ スセ\ \ }a+\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }},$

$(\textrm{c})0 \leqq a \lt \frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ ヌネ\ \ }a^3+\boxed{\ \ ノハ\ \ }a+\boxed{\ \ ヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }},$

$(\textrm{d})\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }} \leqq a \lt \frac{\boxed{\ \ マミ\ \ }}{\boxe$d{\ \ ムメ\ \ }}$のとき、
$V(a)=\frac{\boxed{\ \ モヤ\ \ }a^3+\boxed{\ \ ユヨ\ \ }a^2+\boxed{\ \ ラリ\ \ }a}{\boxed{\ \ ルレ\ \ }},$

$(\textrm{e})\frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }} \leqq a$のとき、
$V(a)=\frac{\boxed{\ \ ロワ\ \ }}{\boxed{\ \ ヲン\ \ }}$

2022慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP