福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

問題文全文(内容文):
${\Large\boxed{5}}$
空間の2点OとAは$|\overrightarrow{ OA }|=2$を満たすとし、点Aを通り$\overrightarrow{ OA }$に直交する平面をHとする。
平面H上の三角形ABCは、正の実数aに対し
$|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2$
を満たすとする。ただし、$\overrightarrow{ u }・\overrightarrow{ v }$はベクトル$\overrightarrow{ u }$と$\overrightarrow{ v }$の内積を表す。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }$の値を求めよ。
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。
(2)ベクトル$\overrightarrow{ OP }$を、実数$\alpha,\beta,\gamma$を用いて
$\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }$と表すとき、
$\alpha,\beta,\gamma$の値をそれぞれ求めよ。
(3)空間の点Qは$2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }$を満たすとする。直線PQが、
点Oを中心とする半径2の球Sに接しているとき、$|\overrightarrow{ AP }|$の値および$a$の値を求めよ。
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、
$\triangle APR$の面積を求めよ。

2021慶應義塾大学経済学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$
空間の2点OとAは$|\overrightarrow{ OA }|=2$を満たすとし、点Aを通り$\overrightarrow{ OA }$に直交する平面をHとする。
平面H上の三角形ABCは、正の実数aに対し
$|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2$
を満たすとする。ただし、$\overrightarrow{ u }・\overrightarrow{ v }$はベクトル$\overrightarrow{ u }$と$\overrightarrow{ v }$の内積を表す。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }$の値を求めよ。
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。
(2)ベクトル$\overrightarrow{ OP }$を、実数$\alpha,\beta,\gamma$を用いて
$\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }$と表すとき、
$\alpha,\beta,\gamma$の値をそれぞれ求めよ。
(3)空間の点Qは$2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }$を満たすとする。直線PQが、
点Oを中心とする半径2の球Sに接しているとき、$|\overrightarrow{ AP }|$の値および$a$の値を求めよ。
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、
$\triangle APR$の面積を求めよ。

2021慶應義塾大学経済学部過去問
投稿日:2021.07.09

<関連動画>

【数B】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る 

【数C】ベクトルの基本⑯点の存在範囲を考える

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点の存在範囲を考える問題
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(3)〜受験編・文理共通

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を原点、$A(1,1),B(1,-1)$とする。
(1) $\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$で定められる点Pを考える。$s,t$が $2s+t \leqq 2,$
$s \geqq 0,t \geqq 0$を満たすながら動くとき、点$P$の存在する範囲を図示せよ。

(2) $\overrightarrow{ OQ }=(1-u)\overrightarrow{ QA }+2u\overrightarrow{ QB }$で定められる点$Q$を考える。$u$が$0 \leqq u \leqq 1$を
満たしながら動くとき、点$P$の存在する範囲を図示せよ。
この動画を見る 

【数B】ベクトル:単位ベクトルを成分で表そう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題616
$\vec{a}=(-3,4)$と同じ向きの単位ベクトル$\vec{e}$を求めよ。
この動画を見る 

【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 
PAGE TOP