【高校受験対策】数学-関数31 - 質問解決D.B.(データベース)

【高校受験対策】数学-関数31

問題文全文(内容文):
右の図のように、関数$y = x ^ 2$のグラフ上に2点$A、B$がある。
四角形$AOCB$は長方形であり、点$A$の$x$座標は$-\dfrac{1}{2}$である。
2点$A、C$から$x$軸に垂線$AP、CQ$をそれぞれひくとき、次の問いに答えなさい。

①$△APO$の面積を求めなさい。

②$△APO∞△OQC$である。
このことを用いて、直線$OC$の傾きを求めなさい。

③直線$AB$上に点$M$があり、関数$y = x ^ 2$のグラフ上に点$N(t、t^2)$がある。
点$M$と点$N$の$x$座標が等しいとき、点$M$の座標を$t$を用いて表しなさい。

④点$B$の座標を求めなさい。

⑤$△OQC$の面積を求めなさい。

図は動画内参照
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y = x ^ 2$のグラフ上に2点$A、B$がある。
四角形$AOCB$は長方形であり、点$A$の$x$座標は$-\dfrac{1}{2}$である。
2点$A、C$から$x$軸に垂線$AP、CQ$をそれぞれひくとき、次の問いに答えなさい。

①$△APO$の面積を求めなさい。

②$△APO∞△OQC$である。
このことを用いて、直線$OC$の傾きを求めなさい。

③直線$AB$上に点$M$があり、関数$y = x ^ 2$のグラフ上に点$N(t、t^2)$がある。
点$M$と点$N$の$x$座標が等しいとき、点$M$の座標を$t$を用いて表しなさい。

④点$B$の座標を求めなさい。

⑤$△OQC$の面積を求めなさい。

図は動画内参照
投稿日:2018.01.12

<関連動画>

実は半分しか入ってないって信じれる?

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#その他#その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
実は半分しか入ってないって信じれる?
※問題は動画内参照
この動画を見る 

【数学】中高一貫校問題集2幾何109:円:内接四角形:角度の応用2

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、円に内接する五角形ABCDEがある。AB=DE、∠DAE=32°、∠ADE=40°のとき、∠BCDの大きさを求めなさい。
この動画を見る 

高等学校入試予想問題:山形県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#確率#2次関数#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$2(a+4b)+3(a-2b)$を計算せよ.
(2)$\sqrt{27}-\dfrac{6}{\sqrt3}$を計算せよ.
(3)$(x+1)^2+(x-4)(x+2)$を計算せよ.
(4)袋の中に赤玉2個と白玉1個.この袋から玉を1個取り出し,色を調べて戻す.
もう1度玉を取り出すとき,2個共赤玉が出る確率を求めよ.

$\boxed{2}$
(1)$a$の値は?
(2)点$c$の$y$座標
(3)$\triangle ABC$の面積は?
(4)2点$A,B$を通る直線の式は?

$\boxed{3}$
(1)$\triangle AFC \equiv \triangle BEC$の証明をせよ.
(2)$\triangle=40cm^2$のとき,$\triangle ABF=20cm^2$のとき,$AF=?$

山形県立高校過去問
この動画を見る 

言いたいことはただ一つ

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$6x^2+14x+4$を因数分解
この動画を見る 

【中学数学】平方根の基礎固め【中3夏期講習④】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
問1 次の数の平方根を求めよ。
(1)$4$ (2)$49$ (3)$7$ (4) ${(-8)}^2$ (5)$x^6$

問2 次の計算をしなさい
(1)$\sqrt{6}\times\sqrt{30}$ (2)$6\sqrt{10}\div3\sqrt{2}$ (3)$2(\sqrt{3}+2\sqrt{2})-(3\sqrt{2}-\sqrt{2})$
(4)$\sqrt{\frac{3}{2}}+\frac{2\sqrt{6}}{3}-\sqrt{\frac{8}{3}}$ (5)$12\sqrt{60}\div 3\sqrt{10}$ (6)$2\sqrt{3}\times 3\sqrt{2}+\frac{12}{\sqrt{6}}$
この動画を見る 
PAGE TOP