20年5月数学検定準1級1次試験(数列) - 質問解決D.B.(データベース)

20年5月数学検定準1級1次試験(数列)

問題文全文(内容文):
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
投稿日:2020.06.02

<関連動画>

【短時間でマスター!!】等差×等比数列の型の和の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
等差×等比数列の型の和の求め方を解説します。
$S=1+2×2+3×2^3+\cdots+n\cdot2^{n-1}$を求めよ。
この動画を見る 

【数B】確率漸化式:ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率P[n]を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率$P_n$を求めよ。
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(4)3項間の漸化式〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1, a_2=5\\
a_{n+2}=5a_{n+1}-4a_n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1, a_2=5\\
a_{n+2}=4a_{n+1}-4a_n\\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.

$100!$を$101$で割った余りを求めよ.
この動画を見る 
PAGE TOP