弘前大 微分 - 質問解決D.B.(データベース)

弘前大 微分

問題文全文(内容文):
関数$y=f(x)$において($x=a$で微分可能)$\displaystyle \lim_{x\to a}\dfrac{x^2 f(x)-a^2 f(a)}{x^2-a^2}$を$a,f(a),f`(a)$を用いて表せ.

弘前大過去問
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
関数$y=f(x)$において($x=a$で微分可能)$\displaystyle \lim_{x\to a}\dfrac{x^2 f(x)-a^2 f(a)}{x^2-a^2}$を$a,f(a),f`(a)$を用いて表せ.

弘前大過去問
投稿日:2020.12.03

<関連動画>

#大学への数学「大学受験で、たまに使う技」 学力コンテスト (1)(2) #定積分

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sqrt{ \displaystyle \frac{x}{1+x} }(0 \leqq x \leqq 1)$
(1)
逆関数$f^{-1}(x)$を求めよ。

(2)
$I=\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin\ x-\sin^2x }\ dx$

(3)
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sqrt{ \sin^3x-\sin^4x }\ dx$
この動画を見る 

18愛知県教員採用試験(数学:9番 微分と曲線の長さ)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
9⃣ $x=\sqrt 3 t^2 , y = \frac{1}{3}t^3-3t$ $(0 \leqq t \leqq 1)$
(1)$\frac{d^2y}{dx^2}$
(2)曲線の長さl
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学Ⅲ#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。

$0≦x≦1$のとき

$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題017〜東北大学2016年度理系数学第6問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数
$f(x)=\int_0^{\pi}|\sin(t-x)-\sin2t|dt$
の区間$\ 0 \leqq x \leqq \pi\ $における最大値と最小値を求めよ。

2016東北大学理系過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第3問〜指数方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。ただし、eは自然対数の底を表す。
(1)kを実数の定数とし、f(x)=$xe^{-x}$とおく。方程式f(x)=kの異なる実数解の個数を求めよ。ただし、$\displaystyle\lim_{x \to \infty}f(x)$=0を用いてもよい。
(2)$xye^{-(x+y)}$=cを満たす正の実数x, yの組がただ1つ存在するときの実数cの値を求めよ。
(3)$xye^{-(x+y)}$=$\frac{3}{e^4}$を満たす正の実数x, yを考えるとき、yのとりうる値の最大値とそのときのxの値を求めよ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP