問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \frac{(1+2+…+n)^5}{(1^4+2^4+…+n^4)^2}$
を求めて下さい。
$\displaystyle \lim_{ n \to \infty } \frac{(1+2+…+n)^5}{(1^4+2^4+…+n^4)^2}$
を求めて下さい。
単元:
#関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \frac{(1+2+…+n)^5}{(1^4+2^4+…+n^4)^2}$
を求めて下さい。
$\displaystyle \lim_{ n \to \infty } \frac{(1+2+…+n)^5}{(1^4+2^4+…+n^4)^2}$
を求めて下さい。
投稿日:2024.09.04





