【数Ⅱ】【指数対数】指数計算1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【指数対数】指数計算1 ※問題文は概要欄

問題文全文(内容文):
a$\gt$0,b$\gt$0とする。次の式を計算せよ。
(1)(a$^{\frac{1}{2}}$+a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)(a$^{\frac{1}{2}}$-a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)
(2)(a$^{\frac{x}{3}}$-b$^{-\frac{x}{3}}$)(a$^{\frac{2x}{3}}$+a$^{\frac{x}{3}}$b$^{-\frac{x}{3}}$+b$^{-\frac{2x}{3}}$)

(1)($\sqrt[4]{6}$+$\sqrt[4]{5}$)($\sqrt[4]{6}$-$\sqrt[4]{5}$)
(2)($\sqrt[3]{4}$+$\sqrt[3]{2}$)$^3$+($\sqrt[3]{4}$-$\sqrt[3]{2}$)$^3$

(1) $\sqrt[5]{-32}$
(2) $\sqrt[3]{-\frac{1}{64}}$
(3) $\sqrt[3]{54}$$\times$2$\sqrt[3]{-2}$$\times$$\sqrt[3]{16}$
(4) $\sqrt[3]{-24}$+$\sqrt[3]{81}$)$+$$\sqrt[3]{-3}$

x$^{\frac{1}{3}}$+x$^{-\frac{1}{3}}$=3のとき、x+x$^{-1}$, x$^{3}$+x$^{-3}$の値を求めよ。
チャプター:

0:00 第一問
3:20 第二問
5:35 第三問
8:56 第四問

単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a$\gt$0,b$\gt$0とする。次の式を計算せよ。
(1)(a$^{\frac{1}{2}}$+a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)(a$^{\frac{1}{2}}$-a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)
(2)(a$^{\frac{x}{3}}$-b$^{-\frac{x}{3}}$)(a$^{\frac{2x}{3}}$+a$^{\frac{x}{3}}$b$^{-\frac{x}{3}}$+b$^{-\frac{2x}{3}}$)

(1)($\sqrt[4]{6}$+$\sqrt[4]{5}$)($\sqrt[4]{6}$-$\sqrt[4]{5}$)
(2)($\sqrt[3]{4}$+$\sqrt[3]{2}$)$^3$+($\sqrt[3]{4}$-$\sqrt[3]{2}$)$^3$

(1) $\sqrt[5]{-32}$
(2) $\sqrt[3]{-\frac{1}{64}}$
(3) $\sqrt[3]{54}$$\times$2$\sqrt[3]{-2}$$\times$$\sqrt[3]{16}$
(4) $\sqrt[3]{-24}$+$\sqrt[3]{81}$)$+$$\sqrt[3]{-3}$

x$^{\frac{1}{3}}$+x$^{-\frac{1}{3}}$=3のとき、x+x$^{-1}$, x$^{3}$+x$^{-3}$の値を求めよ。
投稿日:2025.03.16

<関連動画>

ただの約分

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1+2+3+4+8+・・・・・・+2^{2024}}{1+8+64+512+・・・・・・+2^{2022}}$
これを計算せよ.
この動画を見る 

聖マリアンナ医大 4次関数と3次関数の共有点の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#対数関数#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+x^2-5x+3$
$g(x)=x^4+x^2-(k+1)x+k$
$f(x)$と$g(x)$の共有点の個数

出典:2010年聖マリアンナ医科大学 過去問
この動画を見る 

指数方程式の解の配置 弘前大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x-2^{x+1}a+8a-15=0$の解が次の条件を満たす$a$の範囲を求めよ.
(1)ただ1つの実数解をもつとき
(2)相異なる2つの実数解がともに1以上のとき

弘前大過去問
この動画を見る 

騙していません!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^{4^{2^x}}=81^{2^6}$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】指数計算2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0, $a^{2x}=5$のとき,$(a^{4x}-a^{-4x})÷(a^x-a^{-x})$の値を求めよ
$2^x-2^{-x}=3$のとき,$2^x+2^{-x}$の値を求めよ
地球と太陽の距離を$1.5×10^{11}$m,光の進む速さを毎秒$3.0×10^8$mとする。
このとき,光が太陽から地球まで到達するには何秒かかるか
この動画を見る 
PAGE TOP