福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(1)mを実数とする。xについての2次方程式x^2-(m+3)x+m^2-9=0の\hspace{80pt}\\
二つの解をα,βとする。α,βが実数であるための必要十分条件は- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }である。\\
mが- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }の範囲を動くときの\hspace{190pt}\\
α^3+β^3の最小値は\boxed{\ \ ウ\ \ }、最大値は\boxed{\ \ エオカ\ \ }である。\hspace{160pt}
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(1)mを実数とする。xについての2次方程式x^2-(m+3)x+m^2-9=0の\hspace{80pt}\\
二つの解をα,βとする。α,βが実数であるための必要十分条件は- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }である。\\
mが- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }の範囲を動くときの\hspace{190pt}\\
α^3+β^3の最小値は\boxed{\ \ ウ\ \ }、最大値は\boxed{\ \ エオカ\ \ }である。\hspace{160pt}
\end{eqnarray}
投稿日:2022.11.11

<関連動画>

当然ですが判別式は使えませんよ?虚数を含む二次関数の問題【愛知大学 入試問題】【数学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)
教材: #4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$i$を虚数単位とするとき、$x$の方程式
$(1-i)x^2+(3k-6i)x+8-5ki+2i=0$
が実数解を持つような整数$k$の値と、その時の実数解$x$を求めよ。
この動画を見る 

ナイスな連立4元三次方程式

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=30 \\
b+acd=30,
c+abd=30,
d+abc=30
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【数Ⅱ】複素数と方程式:3次方程式x³-x²+2x-3=0の3つの解をα,β,γとするとき、次の式の値を求めよう。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次方程式x³-x²+2x-3=0の3つの解をα,β,γとするとき、次の式の値を求めよう。
(1)α²+β²+γ²
(2)α³+β³+γ³
(3)(1/α)+(1/β)+(1/γ)
(4)(1-α)(1-β)(1-γ)
この動画を見る 

愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。

香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。

大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第1問〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の条件を満たす係数が整数の多項式 f(x) を考える。
(I) f(0) は4で割り切れない。
(II) 方程式f(x) = 0 は x = 1 で重解をもつ。
(III) 方程式f(x)=x(x-1)(x-2) は異なる整数解をもつ。
このとき、f(4) を36で割ったときの余りを求めよ。
この動画を見る 
PAGE TOP