問題文全文(内容文):
$4$ 点 $\mathrm{ A }(a, \ 0),\ \mathrm{ B }(0, \ b),\ \mathrm{ C }(-a, \ 0),\ \mathrm{ D }(0, \ -b) \ (a \gt 0, \ b \gt 0)$
を頂点とするひし形 $\mathrm{ABCD}$ がある。
$\mathrm{PA \cdot PC } = \mathrm{PB \cdot PD}$ を満たす点$\mathrm{P}$ の軌跡を求めよ。
$4$ 点 $\mathrm{ A }(a, \ 0),\ \mathrm{ B }(0, \ b),\ \mathrm{ C }(-a, \ 0),\ \mathrm{ D }(0, \ -b) \ (a \gt 0, \ b \gt 0)$
を頂点とするひし形 $\mathrm{ABCD}$ がある。
$\mathrm{PA \cdot PC } = \mathrm{PB \cdot PD}$ を満たす点$\mathrm{P}$ の軌跡を求めよ。
単元:
#平面上の曲線#2次曲線#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
$4$ 点 $\mathrm{ A }(a, \ 0),\ \mathrm{ B }(0, \ b),\ \mathrm{ C }(-a, \ 0),\ \mathrm{ D }(0, \ -b) \ (a \gt 0, \ b \gt 0)$
を頂点とするひし形 $\mathrm{ABCD}$ がある。
$\mathrm{PA \cdot PC } = \mathrm{PB \cdot PD}$ を満たす点$\mathrm{P}$ の軌跡を求めよ。
$4$ 点 $\mathrm{ A }(a, \ 0),\ \mathrm{ B }(0, \ b),\ \mathrm{ C }(-a, \ 0),\ \mathrm{ D }(0, \ -b) \ (a \gt 0, \ b \gt 0)$
を頂点とするひし形 $\mathrm{ABCD}$ がある。
$\mathrm{PA \cdot PC } = \mathrm{PB \cdot PD}$ を満たす点$\mathrm{P}$ の軌跡を求めよ。
投稿日:2025.06.03





