問題文全文(内容文):
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。
2019明治大学理工学部過去問
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。
2019明治大学理工学部過去問
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。
2019明治大学理工学部過去問
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。
2019明治大学理工学部過去問
投稿日:2023.01.18