福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します) - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します)

問題文全文(内容文):
nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に
$X_1,X_2,\ldots\ldots,X_n$とする。$X_1,X_2,\ldots\ldots,X_n$の最小公倍数を$L_n$,
最大公約数を$G_n$とするとき、以下の問いに答えよ。
(1)$L_2=5$となる確率および$G_2=5$となる確率を求めよ。
(2)$L_n$が素数でない確率を求めよ。
(3)$G_n$が素数でない確率を求めよ。

2022大阪大学文系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に
$X_1,X_2,\ldots\ldots,X_n$とする。$X_1,X_2,\ldots\ldots,X_n$の最小公倍数を$L_n$,
最大公約数を$G_n$とするとき、以下の問いに答えよ。
(1)$L_2=5$となる確率および$G_2=5$となる確率を求めよ。
(2)$L_n$が素数でない確率を求めよ。
(3)$G_n$が素数でない確率を求めよ。

2022大阪大学文系過去問
投稿日:2022.04.25

<関連動画>

サイコロ3個目の積が10の倍数になる確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロ3個の目の積が5と10の倍数になる確率をそれぞれ求めよ.

福島大過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第3問〜複雑な反復試行と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
最初に袋の中に白玉が1個入っている。次の規則に従って、1回の操作につき
白玉または赤玉を1個ずつ加えていく。
・1回目の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個加
え、裏が出たときには白玉を袋の中に1個加える。
・2回目以降の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個
加え、裏が出たときには袋から玉を1個無作為に取り出し、その色を見てから
袋に戻し、さらに同じ色の玉を袋の中に1個加える。
(1) 2回目の操作を終えたとき、袋の中に白玉がちょうど2個入っている確率は
$\boxed{\ \ サ\ \ }$である。
(2) 3回目の操作を終えたとき、コインの表が2回、裏が1回出ていたという条件
の下で、袋の中に白玉がちょうど2個入っている条件つき確率は$\boxed{\ \ シ\ \ }$である。
以下、kは2以上の整数とし、k回目の操作を終えたときを考える。
(3)袋の中に白玉のみが入っている確率は$\boxed{\ \ ス\ \ }$である。
(4)1回目の操作で赤玉を加えたという条件の下で、袋の中に白玉がちょうどk個
入っている条件つき確率は$\boxed{\ \ セ\ \ }$である。
(5)袋の中に白玉がちょうどk個入っている確率は$\boxed{\ \ ソ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(2)〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)赤玉4個と白玉8個が入っている袋から玉を
1個取り出し、
これをもとに戻さないで続けてもう1個玉を取り出す。
2個目に取り出した玉が白玉であるとき、
1個目に取り出した玉も白玉である確率を求めよ。

2022中央大学経済学部過去問
この動画を見る 

【数A】【場合の数と確率】確率の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,E,F,G,Hの8文字を無造作に1列に並べるとき、次のようになる確率を求めよ。
(1)両端がA,Bである。
(2)A,Bが隣り合う。
(3)AはBより左に、BはCより左にある。

男子6人、女子2人がくじ引きで席を決めて円卓を囲んで座るとき、次のようになる確率を求めよ。
(1)女子2人が隣り合う。
(2)女子2人が向かい合う。

A,B,C,Dの4人がじゃんけんを1回するとき、次の確率を求めよ。
(1)Aだけが勝つ確率
(2)1人だけが勝つ確率

3つのさいころを同時に投げるとき、次のような目が出る確率を求めよ。
(1)目の積が150
(2)目の積が18
(3)目の積が135以上
この動画を見る 

気付けば一瞬!!確率 2024早稲田佐賀

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,C,Dと書かれた4つのボールを無作為に横1列に並べるとき、AのボールがBのボールより右に来る確率を求めよ

2024早稲田佐賀高等学校
この動画を見る 
PAGE TOP