福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します) - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します)

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に\\
X_1,X_2,\ldots\ldots,X_nとする。X_1,X_2,\ldots\ldots,X_nの最小公倍数をL_n,\\
最大公約数をG_nとするとき、以下の問いに答えよ。\\
(1)L_2=5となる確率およびG_2=5となる確率を求めよ。\\
(2)L_nが素数でない確率を求めよ。\\
(3)G_nが素数でない確率を求めよ。
\end{eqnarray}

2022大阪大学文系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に\\
X_1,X_2,\ldots\ldots,X_nとする。X_1,X_2,\ldots\ldots,X_nの最小公倍数をL_n,\\
最大公約数をG_nとするとき、以下の問いに答えよ。\\
(1)L_2=5となる確率およびG_2=5となる確率を求めよ。\\
(2)L_nが素数でない確率を求めよ。\\
(3)G_nが素数でない確率を求めよ。
\end{eqnarray}

2022大阪大学文系過去問
投稿日:2022.04.25

<関連動画>

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
この動画を見る 

茨城大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$

(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ

(2)
積$abcd$が4の倍数となる確率を求めよ

出典:2010年茨城大学 過去問
この動画を見る 

【高校数学】原因の確率~不良品の確率など2題~ 2-9【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率

-----------------

2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
この動画を見る 

福田のおもしろ数学160〜星のカピイは能力を何個持てるか

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
星のカピイは敵の能力をコピーできます。2つの能力を組み合わせて別の能力にすることもできます。(同じ能力を組み合わせることも可能)能力は全部で12種類あります。さてカピイは何個の能力を使うことができるでしょう。
この動画を見る 

福田の数学〜北海道大学2023年理系第4問〜絶対値の和の最小となる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ... ,$a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_3$=5となる確率を求めよ。
(2)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$,...,$a_n$に関する必要十分条件を求めよ。
(3)nを4以上の自然数とする。$L_n$=$K_n$+|$a_4$-4|とおき、$L_n$のとりうる値の最小値を$r_n$とする。$L_n$=$r_n$となる確率$p_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP