問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}
2022一橋大学文系過去問
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}
2022一橋大学文系過去問
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}
2022一橋大学文系過去問
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}
2022一橋大学文系過去問
投稿日:2022.04.13