大学入試問題#37 早稲田大学(2021) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#37 早稲田大学(2021) 整数問題

問題文全文(内容文):
$a,b,c:$実数
$0 \leqq a \leqq b \leqq c$
$a+b+c=7$を満たすとき
$ab,bc,ca$の最大値を求めよ。

出典:2021年早稲田大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a,b,c:$実数
$0 \leqq a \leqq b \leqq c$
$a+b+c=7$を満たすとき
$ab,bc,ca$の最大値を求めよ。

出典:2021年早稲田大学 入試問題
投稿日:2021.10.20

<関連動画>

福田の数学〜早稲田大学2023年教育学部第2問〜三角形と線分の長さの比

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 3角形ABCに対して、点Pを3角形ABCの内部の点とする。また、直線AB,BC,CA上の点で、点Pに最も近い点をそれぞれX,Y,Zとする。線分PA,PB,PCの長さをそれぞれ$a$,$b$,$c$とし、その和を$s$とする。線分PX,PY,PZの長さをそれぞれ$x$,$y$,$z$とし、その和を$t$とする。$\angle$APB=2$\gamma$とし、その2等分線と直線ABの交点をX'とする。このとき、次の問いに答えよ。
(1)3角形ABCは正3角形であり、点Pは$\angle$Aの2等分線にあるときの$\frac{s}{t}$の最小値を求めよ。
(2)線分PX'の長さを$a$,$b$,$\cos\gamma$を用いて表せ。
(3)3角形ABCと点P(ただし、点Pは3角形ABCの内部の点)を任意に動かすときの$\frac{s}{t}$の最小値を求めよ。$\angle$BPC=2$\alpha$, $\angle$CPA=2$\beta$としたとき、以下の不等式が成立することを利用してもよい。
$(a+b+c)-2(\sqrt{ab}\cos\gamma+\sqrt{bc}\cos\alpha\sqrt{ca}\cos\beta)$≧0
この動画を見る 

大阪大2022

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.

2022阪大過去問
この動画を見る 

大学入試問題#468「パズルで遊ぶ感じ」 岩手大学(2022) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$g(x)=f(x)e^{-x}$
(1)
$f'(x)=f(x)+g'(x)e^x$を示せ

(2)
$a$:定数
$f(x)=\displaystyle \int_{a}^{x} (f(t)-4te^{-t}) dt$
$f(0)=1$のとき$f(x),a$を求めよ

出典:2022年岩手大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間において、3点A(2,1,2), B(0,3,0), C(0,-3,0)を頂点とする三角形ABCを考える。以下の問いに答えよ。
(1)$\angle$BACを求めよ。
(2)0≦h≦2に対し、線分AB,ACと平面x=hとの交点をそれぞれP,Qとする。
点P,Qの座標を求めよ。
(3)0≦h≦2に対し、点(h,0,0)と線分PQの距離をhで表せ。ただし、点と線分の距離とは、点と線分上の点の距離の最小値である。
(4)三角形ABCをx軸の周りに1回転させ、そのときに三角形が通過する点全体からなる立体の体積を求めよ。

2023早稲田大学理工学部過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$< 1を満たす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部になる2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)$f(\theta)$=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式$f(\theta)$=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも一つ存在することを示せ。
(2)Dの座標をa,θを用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも一つ存在することを示せ。また、このようなθはただ一つであることを示せ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP