福田の1.5倍速演習〜合格する重要問題040〜上智大学2019年度TEAP理系第2問〜複素数平面上で正三角形となる条件 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題040〜上智大学2019年度TEAP理系第2問〜複素数平面上で正三角形となる条件

問題文全文(内容文):
複素数平面において、円周$|z|=1$上の異なる3点$z_1,z_2,z_3$を考える。
このとき、次の条件pとqは同値であることを示せ。
$p:z_1,z_2,z_3$を頂点とする三角形が正三角形である。
$q:z_1+z_2+z_3=0$

2019上智大過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面において、円周$|z|=1$上の異なる3点$z_1,z_2,z_3$を考える。
このとき、次の条件pとqは同値であることを示せ。
$p:z_1,z_2,z_3$を頂点とする三角形が正三角形である。
$q:z_1+z_2+z_3=0$

2019上智大過去問
投稿日:2022.12.25

<関連動画>

ド・モアブルの定理を用いてオイラーの公式を導く

アイキャッチ画像
単元: #複素数平面#関数と極限#複素数平面#関数の極限#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
この動画を見る 

大学入試問題#531「作成時間がありませんでした。」 横浜市立大学(2022) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$のとき
$\alpha^{18}+\alpha^6+\alpha^4+\alpha^2$の値を求めよ

出典:2023年横浜市立大学 入試問題
この動画を見る 

福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
この動画を見る 

中学生の知識でオイラーの公式を理解しよう Vol 9

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう Vol 9
この動画を見る 

福田の数学〜名古屋大学2024年理系第2問〜3次方程式の共通解と複素数平面

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $c$を1より大きい実数とする。また、$i$を虚数単位として、$\alpha$=$\displaystyle\frac{1-i}{\sqrt 2}$ とおく。
複素数$z$に対して、
$P(z)$=$z^3$-$3z^2$+$(c+2)z$-$c$, $Q(z)$=$-\alpha^7z^3$+$3\alpha^6z^2$+$(c+2)\alpha z$-$c$
と定める。
(1)方程式$P(z)$=0を満たす複素数$z$をすべて求め、それらを複素数平面上に図示せよ。
(2)方程式$Q(z)$=0を満たす複素数$z$のうち実部が最大のものを求めよ。
(3)複素数$z$についての2つの方程式$P(z)$=0, $Q(z)$=0が共通解$\beta$を持つとする。そのときの$c$の値と$\beta$を求めよ。
この動画を見る 
PAGE TOP