早稲田(政経) 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

早稲田(政経) 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2014早稲田大学過去問題
x,yは自然数、Pは3以上の素数
(1)$x^2-y^2 = P$が成り立つとき、x,yをPで表せ(答えのみ)
(2)$x^3-y^3 = P$が成り立つとき、Pを6で割った余りは1であることを証明せよ。
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
x,yは自然数、Pは3以上の素数
(1)$x^2-y^2 = P$が成り立つとき、x,yをPで表せ(答えのみ)
(2)$x^3-y^3 = P$が成り立つとき、Pを6で割った余りは1であることを証明せよ。
投稿日:2018.05.07

<関連動画>

【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
この動画を見る 

【数A】【場合の数】集合の文章題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
海外旅行者100人のうち、75人がカゼ薬を、80人が胃薬を携帯していた。次のような人は、最も多くて何人か。また少なくて何人か。
       (1)カゼ薬と胃薬を両方とも携帯した人
       (2)カゼ薬と胃薬を両方とも携帯していない人
この動画を見る 

18兵庫県教員採用試験(数学:1-1 確率)

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#確率
指導講師: ますただ
問題文全文(内容文):
1⃣-(1)
赤5コ、白7コが入った袋がある。
(1)同時に2コとるとき、玉の色が異なる確率を求めよ。
(2)1コとって、袋にもどさず2コ目をとる。
2コ目が白のとき、1コ目も白の確率を求めよ。
この動画を見る 

「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
この動画を見る 

【受験対策】  数学-関数⑥

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で、直線ℓは関数y=x+6のグラフです。
x軸上に点A(-1,0)、点B(4,0)をy軸上に点C(0,4)をそれぞれとります。
また、直線ℓ上の$x \gt 0,y \gt 0$の部分に点Pをとります。

①2点B,Cを通る直線の式は?

②x軸、y軸、直線ℓで囲まれた図形の面積は?

③△ABPの面積と△ACPの面積が等しくなる時の点Pの座標は?
※図は動画内参照
この動画を見る 
PAGE TOP