福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴

問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
投稿日:2024.06.06

<関連動画>

一橋大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c)$の組を求めよ。
但し$a$は奇数
$a^4=b^2+2^c$

出典:2018年一橋大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題036〜京都大学2017年度文系第2問〜特定の素因数を持つ整数の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。ただし、$0.3010 \lt \log_{10}2 \lt 0.3011$
であることは用いてよい。
(1)100桁以下の自然数で、2以下の素因数を持たないものの個数を求めよ。
(2)100桁の自然数で、2と5以外の素因巣を持たないものの個数を求めよ。

2017京都大学文系過去問
この動画を見る 

【数学A】整数を割った余りを求める問題(整数の性質/数学と人間の活動)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のものを求めよ。
(1)
$5^{100}$を$4$で割った余り

(2)
$15^{50}$を$7$で割った余り

(3)
$3^{30}$を$4$で割った余り
この動画を見る 

福田のおもしろ数学352〜三角形の3辺の長さと周の長さと面積

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$3$ 辺の長さが $a,a,b$、周の長さが $P$、面積が $A$ の三角形がある。$b$ と $P$ が整数かつ $P=A^2$ のとき、$(a,b)$ を求めよ。
この動画を見る 

琉球大 剰余 二項定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.

1987琉球大過去
この動画を見る 
PAGE TOP