07和歌山県教員採用試験(数学:4番 複素数) - 質問解決D.B.(データベース)

07和歌山県教員採用試験(数学:4番 複素数)

問題文全文(内容文):
$z_0=2$
$z=\displaystyle \frac{1}{2}(\cos\displaystyle \frac{\pi}{3}+i\ \sin\displaystyle \frac{\pi}{3})$
$z_n=z\ z_{n-1}$
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n|z_{k+1}-z_k|$を求めよ。

出典:和歌山県教員採用試験
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z_0=2$
$z=\displaystyle \frac{1}{2}(\cos\displaystyle \frac{\pi}{3}+i\ \sin\displaystyle \frac{\pi}{3})$
$z_n=z\ z_{n-1}$
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n|z_{k+1}-z_k|$を求めよ。

出典:和歌山県教員採用試験
投稿日:2021.08.29

<関連動画>

複素数 慈恵医大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.

(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.

2004慈恵医大過去問
この動画を見る 

【高校数学】数Ⅲ-9 複素数の図表示①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄に適する数や言葉をいれよう.

点$(\sqrt3+3i)z$は,点$z$を①を中心に②だけ回転し,
原点からの距離$\vert z \vert$を③倍したものである.

点$\sqrt5(-1+i)z$は,点$z$を④を中心に⑤だけ回転し,
原点からの距離$\vert z \vert$を⑥倍したものである.
この動画を見る 

16和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
複素数$z=x+yi$が
$1\leqq z+\dfrac{1}{z}\leqq 6$
を満たすとき,
$z$に存在範囲を複素数平面上に図示せよ.
$x,y$は実数とする.
この動画を見る 

大学入試問題#60 広島工業大学(2021) 因数定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^{2019}+x^{2020}$を$x^2+x+1$で割った余りを求めよ。

出典:2021年広島工業大学 入試問題
この動画を見る 

06京都府教員採用試験(数学:1-(4) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$

$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$のとき,
$z^{2005}$の値を求めよ.
この動画を見る 
PAGE TOP