福田の数学〜大阪大学2024年理系第1問〜方程式の解と極限 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2024年理系第1問〜方程式の解と極限

問題文全文(内容文):
$\Large\boxed{1}$ 自然数$n$に対して、関数$f_n(x)$を
$f_n(x)$=1-$\displaystyle\frac{1}{2}e^{nx}$+$\displaystyle\cos\frac{x}{3}$ ($x$≧0)
で定める。ただし、$e$は自然対数の底である。
(1)方程式$f_n(x)$=0は、ただ1つの実数解をもつことを示せ。
(2)(1)における実数解を$a_n$とおくとき、極限値$\displaystyle\lim_{n \to \infty}a_n$ を求めよ。
(3)極限値$\displaystyle\lim_{n \to \infty}na_n$ を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数$n$に対して、関数$f_n(x)$を
$f_n(x)$=1-$\displaystyle\frac{1}{2}e^{nx}$+$\displaystyle\cos\frac{x}{3}$ ($x$≧0)
で定める。ただし、$e$は自然対数の底である。
(1)方程式$f_n(x)$=0は、ただ1つの実数解をもつことを示せ。
(2)(1)における実数解を$a_n$とおくとき、極限値$\displaystyle\lim_{n \to \infty}a_n$ を求めよ。
(3)極限値$\displaystyle\lim_{n \to \infty}na_n$ を求めよ。
投稿日:2024.05.31

<関連動画>

福田の数学〜早稲田大学2023年理工学部第4問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#微分とその応用#複素数平面#図形への応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
この動画を見る 

大学入試問題#251 新潟大学(2012) #相加相乗平均

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: ますただ
問題文全文(内容文):
$a,b,c,d$:正の実数
$\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[ 4 ]{ abcd }$を示せ

出典:2012年新潟大学 入試問題
この動画を見る 

大学入試問題#477「もうすこし工夫できそう」 山形大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{1}{e}}^{1} (1+\displaystyle \frac{1}{x})log\ x\ dx$

出典:2016年山形大学 入試問題
この動画を見る 

島根大(医】三角関数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
この動画を見る 

広島大 対数の証明問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$を異なる自然数とするとき、
$P log_2 3$と$q log_2 3$の小数部分は異なることを証明せよ。
この動画を見る 
PAGE TOP