最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第5問〜平面図形、チェバの定理、メネラウスの定理、方べきの定理 - 質問解決D.B.(データベース)

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第5問〜平面図形、チェバの定理、メネラウスの定理、方べきの定理

問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると

$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}, \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$

である。したがって

$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$

となる。

4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき

$AB=\boxed{\ \ ケコ\ \ }$

である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり

$\angle AEG=\boxed{\ \ ス\ \ }$

である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$

2020センター試験過去問
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると

$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}, \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$

である。したがって

$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$

となる。

4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき

$AB=\boxed{\ \ ケコ\ \ }$

である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり

$\angle AEG=\boxed{\ \ ス\ \ }$

である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$

2020センター試験過去問
投稿日:2020.01.23

<関連動画>

福田の数学〜長文問題を解くコツは〜慶應義塾大学2023年環境情報学部第6問〜長文問題と2次関数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{6}$いま、 A 国の部品会社 A 社から B 国のメ ー カ ー B 社が一定量の部品の取引を行うために、その取引価格pを交渉している。 A 社の生産コスト c は事前の投資額xに依存し、$\dfrac{1}{8}x^2-10x+220$が成り立っているものとすると、 A 社の利益はp-c-xと表すことができる。一方、 B 社はこの部品を使用し生産を行うことで308 の売上を得ることができるものとすると、 A 社から部品を輸人する際に 10 %の関税が課せられるため、 B 社の利益は$308- \dfrac{11}{10}p$と表すことができる。ところで、交渉は常に成立するわけではなく決裂することもあるから、 A 社およびB 社は共に決裂した場合のことを考慮しながら互いに交渉しなければならないそこで、交渉が成立したときの A 社 (B 社)の利益から、交渉が決裂したときのA社(B社)の利益(負の場合は損失を意味する)を引いた値を、A社(B社)の純利益と呼び、 A 社の純利益と B 社の純利益の積を最大化するようにpの値が定まるものとする。またA社は以上のことを踏まえて、自らの利益p-c-xを最大化するようなxの大きさの投資を、事前に行っておくものとする。
(1)交渉が決裂した時、A社は生産を行わず生産コストはかからないが、事前の投資額xの分だけ損失を被るのでA社の利益は-xとなり、B社はB国内の他の部品会社から、価格220で同僚の同じ部品を調達できるとすると、(この場合は関税がかからないことから)B社の利益は308-220=88となる。この場合の投資額xは$\fbox{ア}$となり、価格pは$\fbox{イ}$となる。
(2)交渉が決裂した時、A者は国内の他のメーカーに価格250で部品を販売できるとするとB社の利益は0となる。この場合の投資額xは$\fbox{ウ}$となり、価格pは$\fbox{エ}$となる。
最後に、交渉が成立した場合の「(2)の会社の利益」ー「(1)のA社の利益」=$\fbox{オ}$

2023慶應義塾大学環境情報学部過去問
この動画を見る 

先ほどの動画の解説 前編

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
先程の動画の解説です。前編
この動画を見る 

3つの3乗が参上 大阪工業大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(a-b)^3(a+b)^3(a^2+b^2)^3$

大阪工業大学
この動画を見る 

【高校数学】数Ⅰ-1 係数と次数

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎〔 〕内の文字に着目したとき、その係数と次数は?
①$4xy$〔y〕
[係]
[次]

②$-3a^2b$〔a〕
[係]
[次]

③$7xy^2z^3$〔xとy〕
[係]
[次]

◎同類項をまとめて、整式の次数をもとめよう。
④$3x-2x^2+9x-4$
⑤$a^2-5ab^3+3a^2-ab$

◎〔 〕内の文字に着目すると何次式?
また、そのときの定数項は?
⑥$xy^3-4xy+5$〔y〕
次式[定]


⑦$2xy^2z-x^3z^2-11y^2+5$〔xとz〕
次式[定]
この動画を見る 

二重根号の方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解$\sqrt{2-\sqrt{x+2}}=x$を求めよ.
この動画を見る 
PAGE TOP